CHARACTERIZATION OF POROUS MEDIA WITH GEOMETRICAL MULTIFRACTALS

Fractals ◽  
1993 ◽  
Vol 01 (04) ◽  
pp. 894-903 ◽  
Author(s):  
ANTOINE SAUCIER ◽  
JIRI MULLER

In a porous medium the local porosity often exhibits spatial variations. These variations can be characterized by a multifractal spectrum, as long as suitable scaling characteristics are present. We derive some of the properties of such geometrical multifractals, and discuss how the spatial distribution of a set is related to its multifractal spectrum.

Author(s):  
H. L. Pan ◽  
O. Pickena¨cker ◽  
D. Trimis

In this paper, a method for the experimental characterization of the equivalent pore diameter of highly porous open structures is presented. The commonly used characterization of such structures through geometrical properties like ppi number (porous per inch) and porosity proves to be not sufficient for the characterization of length scales related to heat and mass transfer. The procedure used here utilizes the quenching limits for flame propagation as characterization criterion. The determined equivalent pore diameter corresponds to the quenching diameter for a tube-geometry filled with the same combustible mixture. The quenching limit was determined by adjusting critical conditions, which are defined by a constant critical Pe´clet number comprising the laminar flame velocity instead of the flow velocity. Variations of oxygen content and air ratio were used in order to change the laminar flame speed and find the quenching limit for a given porous medium. The equivalent pore diameter determined with this method is a characteristic length scale of the porous medium geometry and is related to the heat transfer between the gas phase and the solid porous structure. The validation of the method was performed on sphere packings with well-documented properties. Several practically relevant highly porous media like foams and fabric lamellae structures were characterized and the results are discussed. Based on the effective heat conductivity (EHC) models of Zehner, Bauer and Schlu¨nder [1–3] for packed beds, an adapted model for foam structures was developed. The adapted model utilizes the equivalent pore diameters determined in the paper and predictions are presented.


2014 ◽  
Vol 6 (1) ◽  
pp. 1024-1031
Author(s):  
R R Yadav ◽  
Gulrana Gulrana ◽  
Dilip Kumar Jaiswal

The present paper has been focused mainly towards understanding of the various parameters affecting the transport of conservative solutes in horizontally semi-infinite porous media. A model is presented for simulating one-dimensional transport of solute considering the porous medium to be homogeneous, isotropic and adsorbing nature under the influence of periodic seepage velocity. Initially the porous domain is not solute free. The solute is initially introduced from a sinusoidal point source. The transport equation is solved analytically by using Laplace Transformation Technique. Alternate as an illustration; solutions for the present problem are illustrated by numerical examples and graphs.


Author(s):  
Swayamdipta Bhaduri ◽  
Pankaj Sahu ◽  
Siddhartha Das ◽  
Aloke Kumar ◽  
Sushanta K. Mitra

The phenomenon of capillary imbibition through porous media is important both due to its applications in several disciplines as well as the involved fundamental flow physics in micro-nanoscales. In the present study, where a simple paper strip plays the role of a porous medium, we observe an extremely interesting and non-intuitive wicking or imbibition dynamics, through which we can separate water and dye particles by allowing the paper strip to come in contact with a dye solution. This result is extremely significant in the context of understanding paper-based microfluidics, and the manner in which the fundamental understanding of the capillary imbibition phenomenon in a porous medium can be used to devise a paper-based microfluidic separator.


2021 ◽  
Author(s):  
S. Malathi ◽  
B. Kiran Gandhi ◽  
Murari Kumar ◽  
Shabistana Nisa ◽  
Puran Chandra ◽  
...  

Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 266
Author(s):  
Péter German ◽  
Mauricio E. Tano ◽  
Carlo Fiorina ◽  
Jean C. Ragusa

This work presents a data-driven Reduced-Order Model (ROM) for parametric convective heat transfer problems in porous media. The intrusive Proper Orthogonal Decomposition aided Reduced-Basis (POD-RB) technique is employed to reduce the porous medium formulation of the incompressible Reynolds-Averaged Navier–Stokes (RANS) equations coupled with heat transfer. Instead of resolving the exact flow configuration with high fidelity, the porous medium formulation solves a homogenized flow in which the fluid-structure interactions are captured via volumetric flow resistances with nonlinear, semi-empirical friction correlations. A supremizer approach is implemented for the stabilization of the reduced fluid dynamics equations. The reduced nonlinear flow resistances are treated using the Discrete Empirical Interpolation Method (DEIM), while the turbulent eddy viscosity and diffusivity are approximated by adopting a Radial Basis Function (RBF) interpolation-based approach. The proposed method is tested using a 2D numerical model of the Molten Salt Fast Reactor (MSFR), which involves the simulation of both clean and porous medium regions in the same domain. For the steady-state example, five model parameters are considered to be uncertain: the magnitude of the pumping force, the external coolant temperature, the heat transfer coefficient, the thermal expansion coefficient, and the Prandtl number. For transient scenarios, on the other hand, the coastdown-time of the pump is the only uncertain parameter. The results indicate that the POD-RB-ROMs are suitable for the reduction of similar problems. The relative L2 errors are below 3.34% for every field of interest for all cases analyzed, while the speedup factors vary between 54 (transient) and 40,000 (steady-state).


AIChE Journal ◽  
1995 ◽  
Vol 41 (4) ◽  
pp. 894-906 ◽  
Author(s):  
Lynn F. Gladden ◽  
Michael P. Hollewand ◽  
Paul Alexander

2010 ◽  
Vol 108 (1) ◽  
pp. 014909 ◽  
Author(s):  
Z. E. A Fellah ◽  
N. Sebaa ◽  
M. Fellah ◽  
F. G. Mitri ◽  
E. Ogam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document