HOW IS THE DYNAMICS OF KÖNIG ITERATION FUNCTIONS AFFECTED BY THEIR ADDITIONAL FIXED POINTS?

Fractals ◽  
1999 ◽  
Vol 07 (03) ◽  
pp. 327-334 ◽  
Author(s):  
V. DRAKOPOULOS

König iteration functions are a generalization of Newton–Raphson method to determine roots of equations. These higher-degree rational functions possess additional fixed points, which are generally different from the desired roots. We first prove two new results: firstly, about these extraneous fixed points and, secondly, about the Julia sets of the König functions associated with the one-parameter family of quadratic polynomials. Then, after finding all the critical points of the König functions as applied to a one-parameter family of cubic polynomials, we examine the orbits of the ones available for convergence to an attracting periodic cycle, should such a cycle exist.

Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 527
Author(s):  
Manoj Kumar Singh ◽  
Arvind K. Singh

In this paper, we have obtained three optimal order Newton’s like methods of order four, eight, and sixteen for solving nonlinear algebraic equations. The convergence analysis of all the optimal order methods is discussed separately. We have discussed the corresponding conjugacy maps for quadratic polynomials and also obtained the extraneous fixed points. We have considered several test functions to examine the convergence order and to explain the dynamics of our proposed methods. Theoretical results, numerical results, and fractal patterns are in support of the efficiency of the optimal order methods.


2017 ◽  
Vol 38 (6) ◽  
pp. 2086-2107 ◽  
Author(s):  
YANXIA DENG ◽  
ZHIHONG XIA

We study the bifurcations of fixed points of Hamiltonian maps and symplectic diffeomorphisms. We are particularly interested in the bifurcations where the Conley–Zehnder index of a fixed point changes. The main result is that when the Conley–Zehnder index of a fixed point increases (or decreases) by one or two, we observe that there are several bifurcation scenarios. Under some non-degeneracy conditions on the one-parameter family of maps, two, four or eight fixed points bifurcate from the original one. We give a relatively detailed analysis of the bifurcation in the two-dimensional case. We also show that higher-dimensional cases can be reduced to the two-dimensional case.


Worldview ◽  
1960 ◽  
Vol 3 (9) ◽  
pp. 7-8
Author(s):  
Will Herberg

John Courtney Murray's writing cannot fail to be profound and instructive, and I have profited greatly from it in the course of the past decade. But I must confess that his article, "Morality and Foreign Policy" (Worldview, May), leaves me in a strange confusion of mixed feelings. On the one hand, I can sympathize with what I might call the historical intention of the natural law philosophy he espouses, which I take to be the effort to establish enduring structures of meaning and value to serve as fixed points of moral decision in the complexities of the actual situation. On the other hand, I am rather put off by the calm assurance he exhibits when he deals with these matters, as though everything were at bottom unequivocally rational and unequivocally accessible to the rational mind. And I am really distressed at what seems to 3ie to be his woefully inadequate appreciation of the position of the "ambiguists," among whom I cannot deny I count myself.


2019 ◽  
Vol 30 (5) ◽  
pp. 417-439 ◽  
Author(s):  
Kaitlyn Chubb ◽  
Daniel Panario ◽  
Qiang Wang

2003 ◽  
Vol 2003 (34) ◽  
pp. 2139-2146 ◽  
Author(s):  
Nuno Martins ◽  
Ricardo Severino ◽  
J. Sousa Ramos

We compute theK-groups for the Cuntz-Krieger algebras𝒪A𝒦(fμ), whereA𝒦(fμ)is the Markov transition matrix arising from the kneading sequence𝒦(fμ)of the one-parameter family of real quadratic mapsfμ.


1999 ◽  
Vol 36 (03) ◽  
pp. 941-950 ◽  
Author(s):  
Anton Bovier

We prove a sharp upper bound on the number of patterns that can be stored in the Hopfield model if the stored patterns are required to be fixed points of the gradient dynamics. We also show corresponding bounds on the one-step convergence of the sequential gradient dynamics. The bounds coincide with the known lower bounds and confirm the heuristic expectations. The proof is based on a crucial idea of Loukianova (1997) using the negative association properties of some random variables arising in the analysis.


1993 ◽  
Vol 03 (01) ◽  
pp. 217-222 ◽  
Author(s):  
RAY BROWN ◽  
LEON O. CHUA

In this letter we show how to use a new form of integration, called dynamical integration, that utilizes the dynamics of a system defined by an ODE to construct a map that is in effect a one-step integrator. This method contrasts sharply with classical numerical methods that utilize polynomial or rational function approximations to construct integrators. The advantages of this integrator is that it uses only one step while preserving important dynamical properties of the solution of the ODE: First, if the ODE is conservative, then the one-step integrator is measure preserving. This is significant for a system having a highly nonlinear component. Second, the one-step integrator is actually a one-parameter family of one-step maps and is derived from a continuous transformation group as is the set of solutions of the ODE. If each element of the continuous transformation group of the ODE is topologically conjugate to its inverse, then so is each member of the one-parameter family of one-step integrators. If the solutions of the ODE are elliptic, then for sufficiently small values of the parameter, the one-step integrator is also elliptic. In the limit as the parameter of the one-step family of maps goes to zero, the one-step integrator satisfies the ODE exactly. Further, it can be experimentally verified that if the ODE is chaotic, then so is the one-step integrator. In effect, the one-step integrator retains the dynamical characteristics of the solutions of the ODE, even with relatively large step sizes, while in the limit as the parameter goes to zero, it solves the ODE exactly. We illustrate the dynamical, in contrast to numerical, accuracy of this integrator with two distinctly different examples: First we use it to integrate the unforced Van der Pol equation for large ∊, ∊≥10 which corresponds to an almost continuous square-wave solution. Second, we use it to obtain the Poincaré map for two different versions of the periodically forced Duffing equation for parameter values where the solutions are chaotic. The dynamical accuracy of the integrator is illustrated by the reproduction of well-known strange attractors. The production of these attractors is eleven times longer when using a conventional fourth-order predictor-corrector method. The theory presented here extends to higher dimensions and will be discussed in detail in a forthcoming paper. However, we caution that the theory we present here is not intended as a line of research in numerical methods for ODEs.


Sign in / Sign up

Export Citation Format

Share Document