A SIMPLE REGULARIZATION METHOD FOR SOLVING ACOUSTICAL INVERSE SCATTERING PROBLEMS

2001 ◽  
Vol 09 (02) ◽  
pp. 565-573 ◽  
Author(s):  
MICHELE PIANA

The problem of determining the shape of an object from far-field data is considered. We present a method, originally formulated in Ref. 1 and furtherly modified in Ref. 3, for the solution of this ill-posed nonlinear inverse problem whose main features are: • the method is exact, that is no low- or high-frequency approximation is considered; • it is not necessary to know the number of scatterers and whether or not the scatterers are penetrable by the waves; • if the medium is not penetrable, it is not necessary to know whether the obstacle is sound-hard or sound-soft; • in the case of an inhomogeneous scatterer, the method provides the shape of the inhomogeneity. The method is particularly simple since it requires only the solution of a linear Fredholm integral equation of the first kind whose integral kernel is the far-field pattern. The numerical instability due to ill-conditioning can be reduced by using regularization algorithms such as Tikhonov method where the regularization parameter is chosen by using Morozov's discrepancy principle generalized to the case where the noise affects the kernel of the integral operator.

2012 ◽  
Vol 11 (2) ◽  
pp. 647-659 ◽  
Author(s):  
Hélène Barucq ◽  
Chokri Bekkey ◽  
Rabia Djellouli

AbstractWe propose a numerical procedure to extend to full aperture the acoustic far-field pattern (FFP) when measured in only few observation angles. The reconstruction procedure is a multi-step technique that combines a total variation regularized iterative method with the standard Tikhonov regularized pseudo-inversion. The proposed approach distinguishes itself from existing solution methodologies by using an exact representation of the total variation which is crucial for the stability and robustness of Newton algorithms. We present numerical results in the case of two-dimensional acoustic scattering problems to illustrate the potential of the proposed procedure for reconstructing the full aperture of the FFP from very few noisy data such as backscattering synthetic measurements.


2012 ◽  
Vol 11 (2) ◽  
pp. 271-284 ◽  
Author(s):  
Yaakov Olshansky ◽  
Eli Turkel

AbstractWe study the inverse problem of recovering the scatterer shape from the far-field pattern(FFP) in the presence of noise. Furthermore, only a discrete partial aperture is usually known. This problem is ill-posed and is frequently addressed using regularization. Instead, we propose to use a direct approach denoising the FFP using a filtering technique. The effectiveness of the technique is studied on a scatterer with the shape of the ellipse with a tower. The forward scattering problem is solved using the finite element method (FEM). The numerical FFP is additionally corrupted by Gaussian noise. The shape parameters are found based on a least-square error estimator. If ũ∞ is a perturbation of the FFP then we attempt to find Γ, the scatterer shape, which minimizes ∣∣ũ∞ − ũ∞∣∣ using the conjugate gradient method for the denoised FFP


2008 ◽  
Vol 104 (12) ◽  
pp. 124513 ◽  
Author(s):  
P. Gellie ◽  
W. Maineult ◽  
A. Andronico ◽  
G. Leo ◽  
C. Sirtori ◽  
...  

1992 ◽  
Vol 70 (2-3) ◽  
pp. 173-178 ◽  
Author(s):  
Ioanna Diamandi ◽  
Costas Mertzianidis ◽  
John N. Sahalos

The far-field pattern characteristics of line sources lying between the slabs of a four-dielectric substrate configuration are presented. The patterns are calculated for several cases of the substrate thickness as well as for several line-source locations. The considerations that are made give useful applications in remote sensing and microstrip antennas.


2011 ◽  
Vol 19 (27) ◽  
pp. 26752 ◽  
Author(s):  
Alessio Benedetti ◽  
Marco Centini ◽  
Mario Bertolotti ◽  
Concita Sibilia

2012 ◽  
Vol 10 ◽  
pp. 69-73 ◽  
Author(s):  
K. A. Yinusa ◽  
C. H. Schmidt ◽  
T. F. Eibert

Abstract. Near-field measurements are established techniques to obtain the far-field radiation pattern of an Antenna Under Test via near-field measurements and subsequent near-field far-field transformation. For measurements acquired in echoic environments, additional post-processing is required to eliminate the effects of multipath signals in the resulting far-field pattern. One of such methods models the measurement environment as a multiple source scenario whereby the collected near-field data is attributed to the AUT and some scattering centers in the vicinity of the AUT. In this way, the contributions of the AUT at the probe can be separated from those of the disturbers during the near-field far-field transformation if the disturber locations are known. In this paper, we present ways of modeling the scattering centers on equivalent surfaces such that echo suppression is possible with only partial or no information about the geometry of the scatterers.


Sign in / Sign up

Export Citation Format

Share Document