STRUCTURE STABILITY AND ELECTRONIC PROPERTIES OF CumConCO (m+n=2–7) CLUSTERS

2016 ◽  
Vol 24 (04) ◽  
pp. 1750049 ◽  
Author(s):  
JUN ZHU ◽  
XIU-RONG ZHANG ◽  
PEI-YING HUO ◽  
ZHI-CHENG YU

The structure stability and electronic properties of CumConCO ([Formula: see text]–7) clusters have been systematically investigated using density functional theory (DFT) within the generalized gradient approximation (GGA). The results indicate that the ground state structures of CumConCO clusters obtained by adsorbing CO molecules on the top sites of stable CumConclusters with C atoms and CO molecules have been activated during adsorption process. Cu2CO, CuCoCO, Cu3CoCO, Co4CO, Cu4CoCO and Cu3Co3CO clusters are stronger than other ground state clusters in thermodynamic stability. Cu2CO, Cu4CO and Cu6CO clusters show stronger chemical stability; Co2CO, Co4CO, Cu5CoCO, Cu3Co3CO, Cu2Co5CO and Co7CO clusters show better propensity to adsorb CO for these clusters have larger adsorption energies; Electronic states of Cu2Co3CO, CuCo4CO, Co5CO, Cu4Co3CO, Cu3Co4CO, CuCo6CO and Co7CO clusters are mainly influenced by those of 3d orbitals in Co and Cu atoms, the contribution to total magnetic moments of these clusters comes mainly from Co atoms and these clusters have high magnetism.

2015 ◽  
Vol 29 (27) ◽  
pp. 1550184 ◽  
Author(s):  
Xiang-Yu Zheng ◽  
Xiu-Rong Zhang ◽  
Ling-Ling Zhang ◽  
Gao-Kang Hu

In this paper, the structure and magnetic properties of WnH2 (n = 7–12) clusters have been systematically investigated using density functional theory (DFT) within the generalized gradient approximation (GGA). The result indicates that the ground state structures of WnH2 clusters are generated when H2 dissociative adsorbed on the atop site of Wn clusters. W8H2 and W[Formula: see text]H2 clusters are found to be more stable than other clusters. The adsorption abilities of Wn clusters are related to W–H bond length, adsorption energy and the charge transfer between H and W clusters as well as the electronic density of state.


2007 ◽  
Vol 21 (30) ◽  
pp. 5091-5098 ◽  
Author(s):  
Q. L. LU ◽  
J. C. JIANG ◽  
J. G. WAN ◽  
G. H. WANG

The ground state structures of Co 12 X ( X = Ni , Ag , Pt , Au ) clusters are obtained by a genetic algorithm with a Gupta-like many-body potential, and further optimized using the density functional theory with generalized gradient approximation. The structures of Co 12 X have a slightly distorted icosahedral pattern. The X atom is on the surface for the most stable configuration. Their total magnetic moments are 0μ B , 3μ B , 21μ B , and 22μ B , respectively. The reasons for the reduction of magnetism of Co 12 X are discussed in detail.


2015 ◽  
Vol 29 (23) ◽  
pp. 1550163
Author(s):  
W. L. Guo ◽  
L. L. Zhang ◽  
M. Luo ◽  
X. R. Zhang

Structures and stabilities of [Formula: see text] clusters have been systematically studied via using density functional theory (DFT) with generalized gradient approximation (GGA). The calculations show that the stable configurations of [Formula: see text] are such structures with one N atom bonded to the external of the basic constructions consisting of Os atoms. Meanwhile, [Formula: see text] clusters [Formula: see text] represent “magic number” effect, and 8 is the magic number. Additionally, the ground-state structures of [Formula: see text] clusters have the best stability, while that of [Formula: see text] cluster possesses the worst stability. The result of the study on the ionization potential (IP) and the electron affinity (EA) shows that there are not topological differences among the configurations of [Formula: see text][Formula: see text] clusters.


2004 ◽  
Vol 1 (4) ◽  
pp. 288-296 ◽  
Author(s):  
G. Rollmann ◽  
P. Entel

We present results of first-principles calculations of structural, magnetic, and electronic properties of small Fe clusters. It is shown that, while the lowest-energy isomers of Fe3 and Fe4 obtained in the framework of density functional theory within the generalized gradient approximation (GGA) are characterized by Jahn-Teller-like distortions away from the most regular shapes (which is in agreement with other works), these distortions are reduced when electron correlation effects are considered explicitly as within the GGA+U approach. At the same time, the magnetic moments of the clusters are enhanced with respect to the pure GGA case, resulting in maximal moments (in the sense of Hund’s rules) of 4 μB per atom for the ground state structures of Fe3 and Fe4, and a total moment of 18 μB for Fe5. This already happens for moderate values of the Coulomb repulsion parameter U̴ 2.0 eV and is explained by changes in the electronic structures of the clusters.


2018 ◽  
Vol 32 (20) ◽  
pp. 1850209
Author(s):  
Zhicheng Yu ◽  
Xiurong Zhang ◽  
Kun Gao ◽  
Peiying Huo

Geometric and electronic structures of W[Formula: see text]Cu[Formula: see text]H2 (m + n [Formula: see text] 7) clusters have been systematically calculated by density functional theory (DFT) at the generalized gradient approximation (GGA) level for ground-state structures. For all W–Cu clusters, H atoms prefer to attach to W atoms in this system during adsorption. And more electrons transfer from H atom to W atom with the growth of the size of the cluster which benefits the hydrogen storage. Analysis of stability properties and electronic properties shows that hydrogen adsorption and dissociation process take place more efficiently at the W2Cu3H2 cluster than the others. Due to high thermodynamic stability and adsorption energy of W5CuH2 cluster among W[Formula: see text]Cu[Formula: see text]H2 (m + n [Formula: see text] 7) clusters, W5Cu is more suitable for hydrogen storage.


2019 ◽  
Vol 9 (7) ◽  
pp. 778-785 ◽  
Author(s):  
Ben-Chao Zhu ◽  
Zhang Yu ◽  
Wang Ping ◽  
Lu Zeng ◽  
Shuai Zhang

By using Density Functional Theory (DFT) method at the B3LYP/6-311G level, the structures, stabilities, and electronic properties of cationic Be2Mg+ n (n = 1–11) clusters have been systematically studied. The optimized geometry show that the ground state structures of cationic Be2Mg+ n (n = 1–11) clusters favor 3D structures except n = 1, 2. Furthermore, the average binding energy E b, the second-order energy differences Δ2E, the fragmentation energy Ef and the HOMO-LUMO energy Egap of the ground state of cationic Be2Mg– n (n = 1–11) clusters are calculated, the final results indicate that Be2Mg+6 and Be2Mg+9 clusters have a higher stability than other clusters. Additionally, the NCP, NEC and Mulliken population analysis reveal that the charges in cationic Be2Mg+ n (n = 1–11) clusters transfer from Mg atom to Be atoms, and strong sp hybridizations are presented in Be atoms of Be2Mg+ n clusters. Finally, the polarizability analysis indicates that the nuclei and electronic clouds of clusters are affected by external field with the increase of cluster size.


2018 ◽  
Vol 32 (04) ◽  
pp. 1850041
Author(s):  
Zhicheng Yu ◽  
Xiurong Zhang ◽  
Peiying Huo ◽  
Kun Gao

Geometric and electronic structures of W[Formula: see text]Mo[Formula: see text] (m + n [Formula: see text] 7) clusters have been systematically calculated by density functional theory (DFT) at the generalized gradient approximation (GGA) level for ground-state structures. Geometry optimization shows that clusters are almost bipyramid structures with m + n [Formula: see text] 4. E[Formula: see text] of clusters is mainly dominated by W atoms. And the substitution of atoms between W and Mo in Mo[Formula: see text] or W[Formula: see text] (n [Formula: see text] 7) clusters enhances the stability of the original clusters. The calculated IE shows that W[Formula: see text]Mo, W[Formula: see text]Mo2, W[Formula: see text]Mo3 and WMo[Formula: see text] are relatively more stable in the chemical reaction. In addition, the magnetism of clusters mainly comes from valance d orbitals.


Sign in / Sign up

Export Citation Format

Share Document