scholarly journals Pyroelectric-controlled bending of a self-trapped optical beam in a photorefractive iron doped lithium niobate crystal

Author(s):  
Lusine Tsarukyan ◽  
Anahit Badalyan ◽  
Fabrice Devaux ◽  
Mathieu Chauvet ◽  
Rafael Drampyan

We present the experimental demonstration of a self-trapped optical beam bending in a photorefractive Fe-doped lithium niobate (LN:Fe) crystal controlled by the pyroelectric effect. Formation of self-trapped beams with typical [Formula: see text]50[Formula: see text][Formula: see text]m diameter and large bending of [Formula: see text]140[Formula: see text][Formula: see text]m are depicted in a 1[Formula: see text]cm length LN:Fe crystal for a laser beam at 632.8[Formula: see text]nm wavelength and 0.5[Formula: see text]mW power with a 30∘C crystal temperature change. The self-trapped beam bending is opposite to the crystal [Formula: see text]-axis. The underlying physics is elaborated and numerical simulations are performed. The long-living waveguiding channels with controlled curvilinear trajectories are promising for optical information routing.


2021 ◽  
Vol 11 (21) ◽  
pp. 9853
Author(s):  
Roman Ponomarev ◽  
Yuri Konstantinov ◽  
Maxim Belokrylov ◽  
Ivan Lobach ◽  
Denis Shevtsov

This work is devoted to the study of the pyroelectric effect on the properties of optical waveguides formed in a lithium niobate crystal by proton exchange. In the present work, we studied the cessation effect of the radiation channeling during thermocycling of Y-splitters samples. We examined the spectral dependence of optical losses on the wavelength using an optical spectrum analyzer. The results demonstrate that in the range of 1530–1570 nm, all wavelengths are suppressed equally. The optical frequency domain reflectometry shows that the increase of optical losses is observed along the entire waveguide, but not only at the Y-splitting point, as supposed earlier.



Author(s):  
Roman Ponomarev ◽  
Yuri Konstantinov ◽  
Ivan Lobach ◽  
Maxim Belokrylov ◽  
Denis Shevtsov

This work is devoted to the study of the pyroelectric effect on the qualities of optical waveguides formed in a lithium niobate crystal by proton exchange. In the present work, we investigated the cessation effect of the radiation channeling during thermocycling of Y-splitters samples. We examined the spectral dependence of optical losses on a wavelength using an optical spectrum analyzer. The results demonstrate that in the range of 1530–1570 nm, all wavelengths are suppressed equally. The optical reflectometry method in the frequency domain shows that the increase of optical losses is observed along the entire waveguide, but not only at the Y-distribution point, as supposed earlier.





2000 ◽  
Author(s):  
Hong X. Zhang ◽  
Chan Hin Kam ◽  
Yan Zhou ◽  
Qing Xiang ◽  
Kantisara Pita ◽  
...  


1999 ◽  
Vol 62 (4) ◽  
pp. 389-396 ◽  
Author(s):  
M. V. ASTHANA ◽  
A. GIULIETTI ◽  
DINESH VARSHNEY ◽  
M. S. SODHA

This paper presents an analysis of the relativistic self-focusing of a rippled Gaussian laser beam in a plasma. Considering the nonlinearity as arising owing to relativistic variation of mass, and following the WKB and paraxial-ray approximations, the phenomenon of self-focusing of rippled laser beams is studied for arbitrary magnitude of nonlinearity. Pandey et al. [Phys. Fluids82, 1221 (1990)] have shown that a small ripple on the axis of the main beam grows very rapidly with distance of propagation as compared with the self-focusing of the main beam. Based on this analogy, we have analysed relativistic self-focusing of rippled beams in plasmas. The relativistic intensities with saturation effects of nonlinearity allow the nonlinear refractive index in the paraxial regime to have a slower radial dependence, and thus the ripple extracts relatively less energy from its neighbourhood.





1986 ◽  
Vol 64 (9) ◽  
pp. 1341-1344 ◽  
Author(s):  
J. Hartikainen ◽  
J. Jaarinen ◽  
M. Luukkala

The surface deformation of oil by laser heating is presented. The self-focusing of the reflected beam and the generation of capillary waves are observed.



2021 ◽  
Author(s):  
Gunjan Purohit ◽  
Bineet Gaur ◽  
Pradeep Kothiyal ◽  
Amita Raizada

Abstract This paper presents a scheme for the generation of terahertz (THz) radiation by self-focusing of a cosh-Gaussian laser beam in the magnetized and rippled density plasma, when relativistic nonlinearity is operative. The strong coupling between self-focused laser beam and pre-existing density ripple produces nonlinear current that originates THz radiation. THz radiation is produced by the interaction of the cosh-Gaussian laser beam with electron plasma wave under the appropriate phase matching conditions. Expressions for the beamwidth parameter of cosh-Gaussian laser beam and the electric vector of the THz radiation have been obtained using higher-order paraxial theory and solved numerically. The self-focusing of the cosh-Gaussian laser beam and its effect on the generated THz amplitude have been studied for specific laser and plasma parameters. Numerical study has been performed on various values of the decentered parameter, incident laser intensity, magnetic field, and relative density. The results have also been compared with the paraxial region as well as the Gaussian profile of laser beam. Numerical results suggest that the self-focusing of the cosh-Gaussian laser beam and the amplitude of THz radiation increase in the extended paraxial region compared to the paraxial region. It is also observed that the focusing of the cosh-Gaussian laser beam in the magnetized plasma and the amplitude of the THz radiation increases at higher values of the decentered parameter.



Sign in / Sign up

Export Citation Format

Share Document