scholarly journals Generalized principal eigenvalues for heterogeneous road–field systems

2019 ◽  
Vol 22 (01) ◽  
pp. 1950013 ◽  
Author(s):  
Henri Berestycki ◽  
Romain Ducasse ◽  
Luca Rossi

This paper develops the notion and properties of the generalized principal eigenvalue for an elliptic system coupling an equation in a plane with one on a line in this plane, together with boundary conditions that express exchanges taking place between the plane and the line. This study is motivated by the reaction–diffusion model introduced by Berestycki, Roquejoffre and Rossi [The influence of a line with fast diffusion on Fisher–KPP propagation, J. Math. Biol. 66(4–5) (2013) 743–766] to describe the effect on biological invasions of networks with fast diffusion imbedded in a field. Here we study the eigenvalue associated with heterogeneous generalizations of this model. In a forthcoming work [Influence of a line with fast diffusion on an ecological niche, preprint (2018)] we show that persistence or extinction of the associated nonlinear evolution equation is fully accounted for by this generalized eigenvalue. A key element in the proofs is a new Harnack inequality that we establish for these systems and which is of independent interest.

2020 ◽  
Vol 19 ◽  
pp. 103462 ◽  
Author(s):  
Hijaz Ahmad ◽  
Tufail A. Khan ◽  
Imtiaz Ahmad ◽  
Predrag S. Stanimirović ◽  
Yu-Ming Chu

Author(s):  
Rachida Mezhoud ◽  
Khaled Saoudi ◽  
Abderrahmane Zaraï ◽  
Salem Abdelmalek

AbstractFractional calculus has been shown to improve the dynamics of differential system models and provide a better understanding of their dynamics. This paper considers the time–fractional version of the Degn–Harrison reaction–diffusion model. Sufficient conditions are established for the local and global asymptotic stability of the model by means of invariant rectangles, the fundamental stability theory of fractional systems, the linearization method, and the direct Lyapunov method. Numerical simulation results are used to illustrate the theoretical results.


2021 ◽  
Vol 82 (6) ◽  
Author(s):  
Pawan Kumar ◽  
Jing Li ◽  
Christina Surulescu

AbstractGliomas are primary brain tumors with a high invasive potential and infiltrative spread. Among them, glioblastoma multiforme (GBM) exhibits microvascular hyperplasia and pronounced necrosis triggered by hypoxia. Histological samples showing garland-like hypercellular structures (so-called pseudopalisades) centered around the occlusion site of a capillary are typical for GBM and hint on poor prognosis of patient survival. We propose a multiscale modeling approach in the kinetic theory of active particles framework and deduce by an upscaling process a reaction-diffusion model with repellent pH-taxis. We prove existence of a unique global bounded classical solution for a version of the obtained macroscopic system and investigate the asymptotic behavior of the solution. Moreover, we study two different types of scaling and compare the behavior of the obtained macroscopic PDEs by way of simulations. These show that patterns (not necessarily of Turing type), including pseudopalisades, can be formed for some parameter ranges, in accordance with the tumor grade. This is true when the PDEs are obtained via parabolic scaling (undirected tissue), while no such patterns are observed for the PDEs arising by a hyperbolic limit (directed tissue). This suggests that brain tissue might be undirected - at least as far as glioma migration is concerned. We also investigate two different ways of including cell level descriptions of response to hypoxia and the way they are related .


Sign in / Sign up

Export Citation Format

Share Document