A GENERALIZED ANALYTICAL APPROACH FOR THE BUCKLING ANALYSIS OF THIN RECTANGULAR PLATES WITH ARBITRARY BOUNDARY CONDITIONS

2011 ◽  
Vol 11 (01) ◽  
pp. 1-21 ◽  
Author(s):  
EUGENIO RUOCCO ◽  
VINCENZO MINUTOLO ◽  
STEFANO CIARAMELLA

An analytical approach for studying the elastic stability of thin rectangular plates under arbitrary boundary conditions is presented. Because the solution is given in closed-form, the approach can be regarded as "exact" under the Kirchhoff–Love assumption. The proposed procedure allows us to obtain the buckling load and modal displacements that do not depend on the number of elements adopted in the numerical discretization using, say, the finite element method. Due to the fact that the longitudinal variation of the displacements is taken into account, the two-dimensional model established for the plate is considered "complete." Such an approach overcomes the shortcomings of conventional modeling presented in the literature. In order to demonstrate the generality of the proposed approach, several examples are prepared and the results obtained are compared with finite element and analytical solutions existing elsewhere.

2016 ◽  
Vol 2016 ◽  
pp. 1-20 ◽  
Author(s):  
Ilwook Park ◽  
Taehyun Kim ◽  
Usik Lee

We propose a new spectral element model for finite rectangular plate elements with arbitrary boundary conditions. The new spectral element model is developed by modifying the boundary splitting method used in our previous study so that the four corner nodes of a finite rectangular plate element become active. Thus, the new spectral element model can be applied to any finite rectangular plate element with arbitrary boundary conditions, while the spectral element model introduced in the our previous study is valid only for finite rectangular plate elements with four fixed corner nodes. The new spectral element model can be used as a generic finite element model because it can be assembled in any plate direction. The accuracy and computational efficiency of the new spectral element model are validated by a comparison with exact solutions, solutions obtained by the standard finite element method, and solutions from the commercial finite element analysis package ANSYS.


2014 ◽  
Vol 2014 ◽  
pp. 1-25 ◽  
Author(s):  
Dongyan Shi ◽  
Qingshan Wang ◽  
Xianjie Shi ◽  
Fuzhen Pang

A generalized Fourier series solution based on the first-order shear deformation theory is presented for the free vibrations of moderately thick rectangular plates with variable thickness and arbitrary boundary conditions, a class of problem which is of practical interest and fundamental importance but rarely attempted in the literatures. Unlike in most existing studies where solutions are often developed for a particular type of boundary conditions, the current method can be generally applied to a wide range of boundary conditions with no need of modifying solution algorithms and procedures. Under the current framework, the one displacement and two rotation functions are generally sought, regardless of boundary conditions, as an improved trigonometric series in which several supplementary functions are introduced to remove the potential discontinuities with the displacement components and its derivatives at the edges and to accelerate the convergence of series representations. All the series expansion coefficients are treated as the generalized coordinates and solved using the Rayleigh-Ritz technique. The effectiveness and reliability of the presented solution are demonstrated by comparing the present results with those results published in the literatures and finite element method (FEM) data, and numerous new results for moderately thick rectangular plates with nonuniform thickness and elastic restraints are presented, which may serve as benchmark solution for future researches.


1964 ◽  
Vol 15 (3) ◽  
pp. 285-298 ◽  
Author(s):  
Thein Wah

SummaryThis paper presents a general procedure for calculating the natural frequencies of rectangular plates continuous over identical and equally spaced elastic beams which are simply-supported at their ends. Arbitrary boundary conditions are permissible on the other two edges of the plate. The results are compared with those obtained by using the orthotropic plate approximation for the system


Sign in / Sign up

Export Citation Format

Share Document