scholarly journals Frequency Domain Spectral Element Model for the Vibration Analysis of a Thin Plate with Arbitrary Boundary Conditions

2016 ◽  
Vol 2016 ◽  
pp. 1-20 ◽  
Author(s):  
Ilwook Park ◽  
Taehyun Kim ◽  
Usik Lee

We propose a new spectral element model for finite rectangular plate elements with arbitrary boundary conditions. The new spectral element model is developed by modifying the boundary splitting method used in our previous study so that the four corner nodes of a finite rectangular plate element become active. Thus, the new spectral element model can be applied to any finite rectangular plate element with arbitrary boundary conditions, while the spectral element model introduced in the our previous study is valid only for finite rectangular plate elements with four fixed corner nodes. The new spectral element model can be used as a generic finite element model because it can be assembled in any plate direction. The accuracy and computational efficiency of the new spectral element model are validated by a comparison with exact solutions, solutions obtained by the standard finite element method, and solutions from the commercial finite element analysis package ANSYS.

1958 ◽  
Vol 25 (2) ◽  
pp. 297-298
Author(s):  
H. D. Conway

Abstract A solution is given for the bending of a uniformly loaded rectangular plate, simply supported on two opposite edges and having arbitrary boundary conditions on the others. The thickness variation is taken as exponential in order to make the solution tractable, and thus closely approximates to uniform taper if the latter is small.


2011 ◽  
Vol 11 (01) ◽  
pp. 1-21 ◽  
Author(s):  
EUGENIO RUOCCO ◽  
VINCENZO MINUTOLO ◽  
STEFANO CIARAMELLA

An analytical approach for studying the elastic stability of thin rectangular plates under arbitrary boundary conditions is presented. Because the solution is given in closed-form, the approach can be regarded as "exact" under the Kirchhoff–Love assumption. The proposed procedure allows us to obtain the buckling load and modal displacements that do not depend on the number of elements adopted in the numerical discretization using, say, the finite element method. Due to the fact that the longitudinal variation of the displacements is taken into account, the two-dimensional model established for the plate is considered "complete." Such an approach overcomes the shortcomings of conventional modeling presented in the literature. In order to demonstrate the generality of the proposed approach, several examples are prepared and the results obtained are compared with finite element and analytical solutions existing elsewhere.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Ilwook Park ◽  
Usik Lee ◽  
Donghyun Park

It has been well known that exact closed-form solutions are not available for non-Levy-type plates. Thus, more accurate and efficient computational methods have been required for the plates subjected to arbitrary boundary conditions. This paper presents a frequency-domain spectral element model for the rectangular finite plate element. The spectral element model is developed by using two methods in combination: (1) the boundary splitting and (2) the super spectral element method in which the Kantorovich method-based finite strip element method and the frequency-domain waveguide method are utilized. The present spectral element model has nodes on four edges of the finite plate element, but no nodes inside. This can reduce the total number of degrees of freedom a lot to improve the computational efficiency significantly, when compared with the standard finite element method (FEM). The high solution accuracy and computational efficiency of the present spectral element model are evaluated by the comparison with exact solutions and the solutions by the standard FEM.


2008 ◽  
Vol 15 (3-4) ◽  
pp. 425-434 ◽  
Author(s):  
N.B.F. Campos ◽  
J.R.F. Arruda

Modeling beam reinforced thin plates at mid and high frequencies through the most commonly used methods such as finite and boundary element methods frequently leads to unsatisfactory results, since the accuracy of these methods depends on the relation between the dimensions of the elements in which the structure was discretized and the wavelength. Due to this characteristic, the modeling using these techniques will require that the size of the elements becomes smaller as the frequency increases, while its number needs to be increased. For structures that are usual in some areas, like the aerospace industry, this will be possible only with an unreasonable computational effort, which is responsible for restricting the use of these methods practically to low-frequency applications. Semi-analytical methods such as the spectral element method do not need mesh refinement at higher frequencies, but they were very limited in the geometries and boundary conditions that can be treated. This paper presents a spectral element for rectangular thin plates reinforced symmetrically along the sides with Euler beams, which can be used to model plates with arbitrary boundary conditions. The method was verified by comparing its results with those obtained from a Finite Element model.


2021 ◽  
Vol 11 (4) ◽  
pp. 1482
Author(s):  
Róbert Huňady ◽  
Pavol Lengvarský ◽  
Peter Pavelka ◽  
Adam Kaľavský ◽  
Jakub Mlotek

The paper deals with methods of equivalence of boundary conditions in finite element models that are based on finite element model updating technique. The proposed methods are based on the determination of the stiffness parameters in the section plate or region, where the boundary condition or the removed part of the model is replaced by the bushing connector. Two methods for determining its elastic properties are described. In the first case, the stiffness coefficients are determined by a series of static finite element analyses that are used to obtain the response of the removed part to the six basic types of loads. The second method is a combination of experimental and numerical approaches. The natural frequencies obtained by the measurement are used in finite element (FE) optimization, in which the response of the model is tuned by changing the stiffness coefficients of the bushing. Both methods provide a good estimate of the stiffness at the region where the model is replaced by an equivalent boundary condition. This increases the accuracy of the numerical model and also saves computational time and capacity due to element reduction.


2016 ◽  
Vol 2016 ◽  
pp. 1-30 ◽  
Author(s):  
Dongyan Shi ◽  
Yunke Zhao ◽  
Qingshan Wang ◽  
Xiaoyan Teng ◽  
Fuzhen Pang

This paper presents free vibration analysis of open and closed shells with arbitrary boundary conditions using a spectro-geometric-Ritz method. In this method, regardless of the boundary conditions, each of the displacement components of open and closed shells is represented simultaneously as a standard Fourier cosine series and several auxiliary functions. The auxiliary functions are introduced to accelerate the convergence of the series expansion and eliminate all the relevant discontinuities with the displacement and its derivatives at the boundaries. The boundary conditions are modeled using the spring stiffness technique. All the expansion coefficients are treated equally and independently as the generalized coordinates and determined using Rayleigh-Ritz method. By using this method, a unified vibration analysis model for the open and closed shells with arbitrary boundary conditions can be established without the need of changing either the equations of motion or the expression of the displacement components. The reliability and accuracy of the proposed method are validated with the FEM results and those from the literature.


Sign in / Sign up

Export Citation Format

Share Document