DYNAMIC ANALYSIS OF PRESTRESSED CONCRETE BOX-GIRDER BRIDGES BY USING THE BEAM SEGMENT FINITE ELEMENT METHOD

2011 ◽  
Vol 11 (02) ◽  
pp. 379-399 ◽  
Author(s):  
Z.-C. WANG ◽  
W.-X. REN

A beam segment element formulation is presented for the dynamic analysis of prestressed concrete box-girder bridges, which can conveniently takes into account the effects of the restrained torsion, distortion, transverse local deformation, diaphragms, and prestressing tendons of prestressed concrete box-girder bridges. The spatial displacement field of the beam segment element is directly represented by the nodal degrees of freedom of the corner points. The stiffness matrix and mass matrix of such a segment element are formulated based on the principle of stationary total potential energy in elastic system dynamics. The proposed beam segment element formulation is then implemented to carry out the free vibration analysis of a real case prestressed concrete box-girder bridge. In terms of both natural frequencies and mode shapes, the formulation is verified by the three-dimensional (3D) finite element analysis using a commercial package. It is demonstrated that the proposed beam segment element formulation is suitable and efficient for the dynamic analysis of prestressed concrete box-girder bridges with the advantages of less element numbers and enough accuracy. It is expected that this methodology can be an effective approach for the further dynamic response analysis under all kinds of dynamic loads such as earthquakes, winds, vehicles, and their interaction.

1989 ◽  
Vol 16 (6) ◽  
pp. 845-853 ◽  
Author(s):  
A. G. Razaqpur ◽  
Mostafa Nofal ◽  
M. S. Mirza

One-seventh scale direct models of single-cell and two-cell prestressed concrete box girder bridges, tested to destruction at McGill University, are analyzed by the nonlinear finite element technique. The nonlinear program NONLACS, utilized in the analysis, is described in detail together with the material models employed. The objective of the current study is to demonstrate the capabilities of the finite element program NONLACS in predicting the ultimate strength and complete response of prestressed concrete box girder bridges at all stages of loading up to the ultimate load. The load–deflection curves, concrete and steel stresses, and deflected shapes of the bridges at different load levels are compared with the corresponding experimental data. The results verify the applicability of the nonlinear finite element method as an economical and expedient alternative, in some cases, to expensive experimental work aimed at the investigation of the complete response of complex structures to applied loads. Key words: box girder bridges, concrete, concrete and steel strains, experimental data, finite element, load–deflection characteristics, nonlinear analysis, prestressing.


1993 ◽  
Vol 20 (5) ◽  
pp. 754-759 ◽  
Author(s):  
S. F. Ng ◽  
M. S. Cheung ◽  
J. Q. Zhao

A layered finite element model with material nonlinearity is developed to trace the nonlinear response of horizontally curved reinforced concrete box-girder bridges. Concrete is treated as an orthotropic nonlinear material and reinforcement is modeled as an elastoplastic strain-hardening material. Due to the fact that the flanges and webs of the structure are much different both in configuration and in the state of stresses, two types of facet shell elements, namely, the triangular generalized conforming element and the rectangular nonconforming element, are adopted to model them separately. A numerical example of a multi-cell box-girder bridge is given and the results are compared favourably with the experimental results previously obtained. Key words: finite element method, curved box-girder bridges, reinforced concrete, nonlinear analysis.


PCI Journal ◽  
1996 ◽  
Vol 41 (4) ◽  
pp. 96-113 ◽  
Author(s):  
Ahmed EI-Remaily ◽  
Maher K. Tadros ◽  
Takashi Yamane ◽  
Gary Krause

Sign in / Sign up

Export Citation Format

Share Document