Stochastic Dynamic Analysis of an Offshore Wind Turbine Considering Frequency-Dependent Soil–Structure Interaction Parameters

2018 ◽  
Vol 18 (06) ◽  
pp. 1850086 ◽  
Author(s):  
Arundhuti Banerjee ◽  
Tanusree Chakraborty ◽  
Vasant Matsagar

This study investigates the dynamic response of a 5[Formula: see text]MW offshore wind turbine with monopile foundation subjected to wind and wave actions under parked condition. It includes dynamic interaction between the monopile and the underlying soil subjected to stochastic wind and wave loading. The offshore wind turbine tower has been modeled using the finite element software ANSYS 14 as a line structure and it comprises a rotor blade system, a nacelle, and a flexible tower under parked condition. The mass of the rotor, blade, and nacelle are lumped at the top of the tower for simplicity. Stochastic wind and wave loadings are simulated using the Kaimal spectrum and the Pierson–Moskowitz spectrum correlating wind and wave forces, respectively. The soil–structure interaction (SSI) effect at the foundation level is taken into consideration by including rotational as well as lateral spring constants derived from Wolf’s double cone model for embedded foundations. The results are studied in the frequency domain for both wind and wave loadings in the form of power spectral density functions, which show that the response of the structure depends not only on the external forces but also on the soil–structure interaction effect. Under very soft soil conditions, the displacement response is amplified to a very high value under wind loading when compared with that under wave loading at lower frequencies. Incorporation of soil–structure interaction also modified the peak value of displacement and its subsequent frequency when compared with that for the fixed base structure which does not consider soil–structure interaction.

2013 ◽  
Vol 54 ◽  
pp. 47-60 ◽  
Author(s):  
S. Bhattacharya ◽  
N. Nikitas ◽  
J. Garnsey ◽  
N.A. Alexander ◽  
J. Cox ◽  
...  

Author(s):  
Wei Shi ◽  
Hyun Chul Park ◽  
Chin Wah Chung ◽  
Hyun Kyung Shin ◽  
Sang Hoon Kim ◽  
...  

Author(s):  
Min-Su Park ◽  
Youn-Ju Jeong ◽  
Young-Jun You ◽  
Du-Ho Lee ◽  
Byeong-Cheol Kim

In order to increase the gross generation of wind turbines, the size of a tower and a rotor-nacelle becomes larger. In other words, the substructure for offshore wind turbines is strongly influenced by the effect of wave forces as the size of substructure increases. In addition, since a large offshore wind turbine has a heavy dead load, the reaction forces on the substructure become severe, thus very firm foundations should be required. Therefore, the dynamic soil-structure interaction has to be fully considered and the wave acting on substructure accurately calculated. In the present study ANSYS AQWA is used to evaluate the wave forces. The wave forces and wave run up on the substructure are presented for various wave conditions. Moreover, the substructure method is applied to evaluate the effect of soil-structure interaction. Using the wave forces and stiffness and damping matrices obtained from this study, the structural analysis of the gravity substructure is carried out through ANSYS mechanical. The structural behaviors of the strength and deformation are evaluated to investigate an ultimate structural safety and serviceability of gravity substructure for various soil conditions. Also, the modal analysis is carried out to investigate the resonance between the wind turbine and the gravity substructure.


Sign in / Sign up

Export Citation Format

Share Document