On the existence of Engel pairs in certain linear groups

2016 ◽  
Vol 15 (04) ◽  
pp. 1650062
Author(s):  
S. G. Quek ◽  
K. B. Wong ◽  
P. C. Wong

Let [Formula: see text] be a group and [Formula: see text]. The 2-tuple [Formula: see text] is said to be an [Formula: see text]-Engel pair, [Formula: see text], if [Formula: see text], [Formula: see text] and [Formula: see text]. Let SL[Formula: see text] be the special linear group of degree [Formula: see text] over the field [Formula: see text]. In this paper, we show that given any field [Formula: see text], there is a field extension [Formula: see text] of [Formula: see text] with [Formula: see text] such that SL[Formula: see text] has an [Formula: see text]-Engel pair for some integer [Formula: see text]. We will also show that SL[Formula: see text] has a [Formula: see text]-Engel pair if [Formula: see text] is a field of characteristic [Formula: see text].

1980 ◽  
Vol 22 (3) ◽  
pp. 439-455 ◽  
Author(s):  
James Archer

Let k be a finite field of characteristic 2, and let G be the three dimensional special linear group over k. The principal indecomposable modules of G over k are constructed from tensor products of the irreducible modules, and formulae for their dimensions are given.


2014 ◽  
Vol 51 (1) ◽  
pp. 83-91
Author(s):  
Milad Ahanjideh ◽  
Neda Ahanjideh

Let V be the 2-dimensional column vector space over a finite field \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{F}_q$$ \end{document} (where q is necessarily a power of a prime number) and let ℙq be the projective line over \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{F}_q$$ \end{document}. In this paper, it is shown that GL2(q), for q ≠ 3, and SL2(q) acting on V − {0} have the strict EKR property and GL2(3) has the EKR property, but it does not have the strict EKR property. Also, we show that GLn(q) acting on \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\left( {\mathbb{F}_q } \right)^n - \left\{ 0 \right\}$$ \end{document} has the EKR property and the derangement graph of PSL2(q) acting on ℙq, where q ≡ −1 (mod 4), has a clique of size q + 1.


1979 ◽  
Vol 28 (4) ◽  
pp. 401-412 ◽  
Author(s):  
J. B. Southcott

AbstractIf w is a group word in n variables, x1,…,xn, then R. Horowitz has proved that under an arbitrary mapping of these variables into a two-dimensional special linear group, the trace of the image of w can be expressed as a polynomial with integer coefficients in traces of the images of 2n−1 products of the form xσ1xσ2…xσm 1 ≤ σ1 < σ2 <… <σm ≤ n. A refinement of this result is proved which shows that such trace polynomials fall into 2n classes corresponding to a division of n-variable words into 2n classes. There is also a discussion of conditions which two words must satisfy if their images have the same trace for any mapping of their variables into a two-dimensional special linear group over a ring of characteristic zero.


2001 ◽  
Vol 131 (3) ◽  
pp. 445-457
Author(s):  
DOMINIQUE ARLETTAZ ◽  
CHRISTIAN AUSONI ◽  
MAMORU MIMURA ◽  
NOBUAKI YAGITA

This paper is devoted to the complete calculation of the additive structure of the 2-torsion of the integral cohomology of the infinite special linear group SL(ℤ) over the ring of integers ℤ. This enables us to determine the best upper bound for the order of the Chern classes of all integral and rational representations of discrete groups.


2009 ◽  
Vol 213 (9) ◽  
pp. 1665-1680 ◽  
Author(s):  
Kevin Hutchinson ◽  
Liqun Tao

2020 ◽  
Vol 23 (2) ◽  
pp. 327-335
Author(s):  
Harry Petyt

AbstractWe extend to arbitrary rings a definition of the octonion special linear group due to Baez. At the infinitesimal level, we get a Lie ring, which we describe over some large classes of rings, including all associative rings and all algebras over a field. As a corollary, we compute all the groups Baez defined.


Sign in / Sign up

Export Citation Format

Share Document