A generalization of a Hall theorem

2016 ◽  
Vol 15 (05) ◽  
pp. 1650085 ◽  
Author(s):  
Alexander N. Skiba

Let [Formula: see text] be some partition of the set [Formula: see text] of all primes, that is, [Formula: see text] and [Formula: see text] for all [Formula: see text]. We say that a finite group [Formula: see text] is [Formula: see text]-soluble if every chief factor [Formula: see text] of [Formula: see text] is a [Formula: see text]-group for some [Formula: see text]. We give some characterizations of finite [Formula: see text]-soluble groups.

Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2165
Author(s):  
Abd El-Rahman Heliel ◽  
Mohammed Al-Shomrani ◽  
Adolfo Ballester-Bolinches

Let σ={σi:i∈I} be a partition of the set P of all prime numbers and let G be a finite group. We say that G is σ-primary if all the prime factors of |G| belong to the same member of σ. G is said to be σ-soluble if every chief factor of G is σ-primary, and G is σ-nilpotent if it is a direct product of σ-primary groups. It is known that G has a largest normal σ-nilpotent subgroup which is denoted by Fσ(G). Let n be a non-negative integer. The n-term of the σ-Fitting series of G is defined inductively by F0(G)=1, and Fn+1(G)/Fn(G)=Fσ(G/Fn(G)). If G is σ-soluble, there exists a smallest n such that Fn(G)=G. This number n is called the σ-nilpotent length of G and it is denoted by lσ(G). If F is a subgroup-closed saturated formation, we define the σ-F-lengthnσ(G,F) of G as the σ-nilpotent length of the F-residual GF of G. The main result of the paper shows that if A is a maximal subgroup of G and G is a σ-soluble, then nσ(A,F)=nσ(G,F)−i for some i∈{0,1,2}.


2018 ◽  
Vol 17 (02) ◽  
pp. 1850031 ◽  
Author(s):  
Bin Hu ◽  
Jianhong Huang ◽  
Alexander N. Skiba

Let [Formula: see text] be a partition of the set of all primes [Formula: see text] and [Formula: see text] a finite group. [Formula: see text] is said to be [Formula: see text]-soluble if every chief factor [Formula: see text] of [Formula: see text] is a [Formula: see text]-group for some [Formula: see text]. A set [Formula: see text] of subgroups of [Formula: see text] is said to be a complete Hall [Formula: see text]-set of [Formula: see text] if every member [Formula: see text] of [Formula: see text] is a Hall [Formula: see text]-subgroup of [Formula: see text] for some [Formula: see text] and [Formula: see text] contains exactly one Hall [Formula: see text]-subgroup of [Formula: see text] for every [Formula: see text] such that [Formula: see text]. A subgroup [Formula: see text] of [Formula: see text] is said to be [Formula: see text]-quasinormal or [Formula: see text]-permutable in [Formula: see text] if [Formula: see text] has a complete Hall [Formula: see text]-set [Formula: see text] such that [Formula: see text] for all [Formula: see text] and all [Formula: see text]. We obtain a new characterization of finite [Formula: see text]-soluble groups [Formula: see text] in which [Formula: see text]-permutability is a transitive relation in [Formula: see text].


Author(s):  
Rolf Brandl

AbstractA classical result of M. Zorn states that a finite group is nilpotent if and only if it satisfies an Engel condition. If this is the case, it satisfies almost all Engel conditions. We shall give a similar description of the class of p-soluble groups of p-length one by a sequence of commutator identities.


2019 ◽  
Vol 22 (6) ◽  
pp. 1035-1047 ◽  
Author(s):  
Zhang Chi ◽  
Alexander N. Skiba

Abstract Let {\mathfrak{F}} be a non-empty class of groups, let G be a finite group and let {\mathcal{L}(G)} be the lattice of all subgroups of G. A chief {H/K} factor of G is {\mathfrak{F}} -central in G if {(H/K)\rtimes(G/C_{G}(H/K))\in\mathfrak{F}} . Let {\mathcal{L}_{c\mathfrak{F}}(G)} be the set of all subgroups A of G such that every chief factor {H/K} of G between {A_{G}} and {A^{G}} is {\mathfrak{F}} -central in G; {\mathcal{L}_{\mathfrak{F}}(G)} denotes the set of all subgroups A of G with {A^{G}/A_{G}\in\mathfrak{F}} . We prove that the set {\mathcal{L}_{c\mathfrak{F}}(G)} and, in the case when {\mathfrak{F}} is a Fitting formation, the set {\mathcal{L}_{\mathfrak{F}}(G)} are sublattices of the lattice {\mathcal{L}(G)} . We also study conditions under which the lattice {\mathcal{L}_{c\mathfrak{N}}(G)} and the lattice of all subnormal subgroup of G are modular.


1979 ◽  
Vol 28 (1) ◽  
pp. 9-14
Author(s):  
Bola O. Balogun

AbstractIn Balogun (1974), we proved that a finite group in which every subgroup is conjugately pure is necessarily Abelian and we left open the infinite case. In this paper we settle this problem positively for soluble, locally soluble groups and certain classes of groups which include the FC-groups. In the last section of this paper we characterize groups which are conjugately pure in every containing group.Subject classification (Amer. Math. Soc. (MOS) 1970): 20 E 99.


2018 ◽  
Vol 21 (3) ◽  
pp. 463-473
Author(s):  
Viachaslau I. Murashka

Abstract Let {\mathfrak{X}} be a class of groups. A subgroup U of a group G is called {\mathfrak{X}} -maximal in G provided that (a) {U\in\mathfrak{X}} , and (b) if {U\leq V\leq G} and {V\in\mathfrak{X}} , then {U=V} . A chief factor {H/K} of G is called {\mathfrak{X}} -eccentric in G provided {(H/K)\rtimes G/C_{G}(H/K)\not\in\mathfrak{X}} . A group G is called a quasi- {\mathfrak{X}} -group if for every {\mathfrak{X}} -eccentric chief factor {H/K} and every {x\in G} , x induces an inner automorphism on {H/K} . We use {\mathfrak{X}^{*}} to denote the class of all quasi- {\mathfrak{X}} -groups. In this paper we describe all hereditary saturated formations {\mathfrak{F}} containing all nilpotent groups such that the {\mathfrak{F}^{*}} -hypercenter of G coincides with the intersection of all {\mathfrak{F}^{*}} -maximal subgroups of G for every group G.


Author(s):  
Viktoria S. Zakrevskaya

Let σ = {σi|i ∈ I } be a partition of the set of all primes ℙ and G be a finite group. A set ℋ  of subgroups of G is said to be a complete Hall σ-set of G if every member ≠1 of ℋ  is a Hall σi-subgroup of G for some i ∈ I and ℋ contains exactly one Hall σi-subgroup of G for every i such that σi ⌒ π(G)  ≠ ∅.  A group is said to be σ-primary if it is a finite σi-group for some i. A subgroup A of G is said to be: σ-permutable in G if G possesses a complete Hall σ-set ℋ  such that AH x = H  xA for all H ∈ ℋ  and all x ∈ G; σ-subnormal in G if there is a subgroup chain A = A0 ≤ A1 ≤ … ≤ At = G such that either Ai − 1 ⊴ Ai or Ai /(Ai − 1)Ai is σ-primary for all i = 1, …, t; 𝔄-normal in G if every chief factor of G between AG and AG is cyclic. We say that a subgroup H of G is: (i) partially σ-permutable in G if there are a 𝔄-normal subgroup A and a σ-permutable subgroup B of G such that H = < A, B >; (ii) (𝔄, σ)-embedded in G if there are a partially σ-permutable subgroup S and a σ-subnormal subgroup T of G such that G = HT and H ∩ T ≤ S ≤ H. We study G assuming that some subgroups of G are partially σ-permutable or (𝔄, σ)-embedded in G. Some known results are generalised.


2018 ◽  
Vol 21 (1) ◽  
pp. 45-63
Author(s):  
Barbara Baumeister ◽  
Gil Kaplan

AbstractLetGbe a finite group with an abelian normal subgroupN. When doesNhave a unique conjugacy class of complements inG? We consider this question with a focus on properties of maximal subgroups. As corollaries we obtain Theorems 1.6 and 1.7 which are closely related to a result by Parker and Rowley on supplements of a nilpotent normal subgroup [3, Theorem 1]. Furthermore, we consider families of maximal subgroups ofGclosed under conjugation whose intersection equals{\Phi(G)}. In particular, we characterize the soluble groups having a unique minimal family with this property (Theorem 2.3, Remark 2.4). In the case when{\Phi(G)=1}, these are exactly the soluble groups in which each abelian normal subgroup has a unique conjugacy class of complements.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Stefanos Aivazidis ◽  
Thomas Müller

Abstract Theorem C in [S. Dolfi, M. Herzog, G. Kaplan and A. Lev, The size of the solvable residual in finite groups, Groups Geom. Dyn. 1 (2007), 4, 401–407] asserts that, in a finite group with trivial Fitting subgroup, the size of the soluble residual of the group is bounded from below by a certain power of the group order and that the inequality is sharp. Inspired by this result and some of the arguments in the above article, we establish the following generalisation: if 𝔛 is a subgroup-closed Fitting formation of full characteristic which does not contain all finite groups and X ¯ \overline{\mathfrak{X}} is the extension-closure of 𝔛, then there exists an (explicitly known and optimal) constant 𝛾 depending only on 𝔛 such that, for all non-trivial finite groups 𝐺 with trivial 𝔛-radical, | G X ¯ | > | G | γ \lvert G^{\overline{\mathfrak{X}}}\rvert>\lvert G\rvert^{\gamma} , where G X ¯ G^{\overline{\mathfrak{X}}} is the X ¯ \overline{\mathfrak{X}} -residual of 𝐺. When X = N \mathfrak{X}=\mathfrak{N} , the class of finite nilpotent groups, it follows that X ¯ = S \overline{\mathfrak{X}}=\mathfrak{S} , the class of finite soluble groups; thus we recover the original theorem of Dolfi, Herzog, Kaplan, and Lev. In the last section of our paper, building on J. G. Thompson’s classification of minimal simple groups, we exhibit a family of subgroup-closed Fitting formations 𝔛 of full characteristic such that S ⊂ X ¯ ⊂ E \mathfrak{S}\subset\overline{\mathfrak{X}}\subset\mathfrak{E} , where 𝔈 denotes the class of all finite groups, thus providing applications of our main result beyond the reach of the above theorem.


2010 ◽  
Vol 17 (04) ◽  
pp. 549-556 ◽  
Author(s):  
Wenbin Guo ◽  
Alexander N. Skiba

Let G be a finite group and p a prime. We say that G is quasisupersoluble (resp., p-quasisupersoluble) if for every non-cyclic chief factor H/K of G (resp., for every non-cyclic chief factor H/K of G of order divisible by p), every automorphism of H/K induced by an element of G is inner. In this paper, we study the structure of quasisupersoluble and p-quasisupersoluble finite groups.


Sign in / Sign up

Export Citation Format

Share Document