Finite groups with regular join graph of subgroups

2016 ◽  
Vol 15 (09) ◽  
pp. 1650170
Author(s):  
Hadi Ahmadi ◽  
Bijan Taeri

Let [Formula: see text] be a non-trivial finite group different from a cyclic [Formula: see text]-group. The join graph of [Formula: see text] is a graph whose vertex set is the set of all proper subgroups of [Formula: see text] which are not contained in the Frattini subgroup of [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are joined by an edge if and only if [Formula: see text]. In this paper we classify finite groups with regular graphs and determine their graphs.

2021 ◽  
Vol 19 (1) ◽  
pp. 850-862
Author(s):  
Huani Li ◽  
Xuanlong Ma ◽  
Ruiqin Fu

Abstract The intersection power graph of a finite group G G is the graph whose vertex set is G G , and two distinct vertices x x and y y are adjacent if either one of x x and y y is the identity element of G G , or ⟨ x ⟩ ∩ ⟨ y ⟩ \langle x\rangle \cap \langle y\rangle is non-trivial. In this paper, we completely classify all finite groups whose intersection power graphs are toroidal and projective-planar.


Author(s):  
Xuanlong Ma

Let [Formula: see text] be a finite group. The power graph of [Formula: see text] is the undirected graph whose vertex set is [Formula: see text], and two distinct vertices are adjacent if one is a power of the other. The reduced power graph of [Formula: see text] is the subgraph of the power graph of [Formula: see text] obtained by deleting all edges [Formula: see text] with [Formula: see text], where [Formula: see text] and [Formula: see text] are two distinct elements of [Formula: see text]. In this paper, we determine the proper connection number of the reduced power graph of [Formula: see text]. As an application, we also determine the proper connection number of the power graph of [Formula: see text].


Author(s):  
Ramesh Prasad Panda ◽  
Kamal Lochan Patra ◽  
Binod Kumar Sahoo

The power graph [Formula: see text] of a finite group [Formula: see text] is the undirected simple graph whose vertex set is [Formula: see text], in which two distinct vertices are adjacent if one of them is an integral power of the other. For an integer [Formula: see text], let [Formula: see text] denote the cyclic group of order [Formula: see text] and let [Formula: see text] be the number of distinct prime divisors of [Formula: see text]. The minimum degree [Formula: see text] of [Formula: see text] is known for [Formula: see text], see [R. P. Panda and K. V. Krishna, On the minimum degree, edge-connectivity and connectivity of power graphs of finite groups, Comm. Algebra 46(7) (2018) 3182–3197]. For [Formula: see text], under certain conditions involving the prime divisors of [Formula: see text], we identify at most [Formula: see text] vertices such that [Formula: see text] is equal to the degree of at least one of these vertices. If [Formula: see text], or that [Formula: see text] is a product of distinct primes, we are able to identify two such vertices without any condition on the prime divisors of [Formula: see text].


2019 ◽  
Vol 18 (01) ◽  
pp. 1950013
Author(s):  
Alireza Abdollahi ◽  
Maysam Zallaghi

Let [Formula: see text] be a group and [Formula: see text] an inverse closed subset of [Formula: see text]. By a Cayley graph [Formula: see text], we mean the graph whose vertex set is the set of elements of [Formula: see text] and two vertices [Formula: see text] and [Formula: see text] are adjacent if [Formula: see text]. A group [Formula: see text] is called a CI-group if [Formula: see text] for some inverse closed subsets [Formula: see text] and [Formula: see text] of [Formula: see text], then [Formula: see text] for some automorphism [Formula: see text] of [Formula: see text]. A finite group [Formula: see text] is called a BI-group if [Formula: see text] for some inverse closed subsets [Formula: see text] and [Formula: see text] of [Formula: see text], then [Formula: see text] for all positive integers [Formula: see text], where [Formula: see text] denotes the set [Formula: see text]. It was asked by László Babai [Spectra of Cayley graphs, J. Combin. Theory Ser. B 27 (1979) 180–189] if every finite group is a BI-group; various examples of finite non-BI-groups are presented in [A. Abdollahi and M. Zallaghi, Character sums of Cayley graph, Comm. Algebra 43(12) (2015) 5159–5167]. It is noted in the latter paper that every finite CI-group is a BI-group and all abelian finite groups are BI-groups. However, it is known that there are finite abelian non-CI-groups. Existence of a finite non-abelian BI-group which is not a CI-group is the main question which we study here. We find two non-abelian BI-groups of orders 20 and 42 which are not CI-groups. We also list all BI-groups of orders up to 30.


Filomat ◽  
2017 ◽  
Vol 31 (16) ◽  
pp. 5323-5334 ◽  
Author(s):  
Asma Hamzeh ◽  
Ali Ashrafi

Let G be a finite group. The power graph P(G) and its main supergraph S(G) are two simple graphs with the same vertex set G. Two elements x,y ? G are adjacent in the power graph if and only if one is a power of the other. They are joined in S(G) if and only if o(x)|o(y) or o(y)|o(x). The aim of this paper is to compute the characteristic polynomial of these graph for certain finite groups. As a consequence, the spectrum and Laplacian spectrum of these graphs for dihedral, semi-dihedral, cyclic and dicyclic groups were computed.


2020 ◽  
Vol 30 (2) ◽  
pp. 172-178
Author(s):  
A. K. Asboei ◽  
◽  
S. S. Salehi ◽  

Let G be a finite group. The main supergraph S(G) is a graph with vertex set G in which two vertices x and y are adjacent if and only if o(x)∣o(y) or o(y)∣o(x). In this paper, we will show that G≅PSL(2,p) or PGL(2,p) if and only if S(G)≅S(PSL(2,p)) or S(PGL(2,p)), respectively. Also, we will show that if M is a sporadic simple group, then G≅M if only if S(G)≅S(M).


Author(s):  
Viachaslau I. Murashka

A Schmidt [Formula: see text]-group is a non-nilpotent [Formula: see text]-group whose proper subgroups are nilpotent and which has the normal Sylow [Formula: see text]-subgroup. The [Formula: see text]-critical graph [Formula: see text] of a finite group [Formula: see text] is a directed graph on the vertex set [Formula: see text] of all prime divisors of [Formula: see text] and [Formula: see text] is an edge of [Formula: see text] if and only if [Formula: see text] has a Schmidt [Formula: see text]-subgroup. The bounds of the nilpotent length of a soluble group are obtained in terms of its [Formula: see text]-critical graph. The structure of a soluble group with given [Formula: see text]-critical graph is obtained in terms of commutators. The connections between [Formula: see text]-critical and other graphs (Sylow, soluble, prime, commuting) of finite groups are found.


Author(s):  
A. Mahmoudifar ◽  
A. Babai

Let [Formula: see text] be a group. The enhanced power graph of [Formula: see text] is a graph with vertex set [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if there exists [Formula: see text] such that [Formula: see text] and [Formula: see text] for some [Formula: see text]. Also, a vertex of a graph is called dominating vertex if it is adjacent to every other vertex of the vertex set. Moreover, an enhanced power graph is said to be a dominatable graph if it has a dominating vertex other than the identity element. In an article of 2018, Bera and his coauthor characterized all abelian finite groups and nonabelian finite [Formula: see text]-groups such that their enhanced power graphs are dominatable (see [2]). In addition as an open problem, they suggested characterizing all finite nonabelian groups such that their enhanced power graphs are dominatable. In this paper, we try to answer their question. We prove that the enhanced power graph of finite group [Formula: see text] is dominatable if and only if there is a prime number [Formula: see text] such that [Formula: see text] and the Sylow [Formula: see text]-subgroups of [Formula: see text] are isomorphic to either a cyclic group or a generalized quaternion group.


1969 ◽  
Vol 21 ◽  
pp. 418-429 ◽  
Author(s):  
James C. Beidleman

The theory of generalized Frattini subgroups of a finite group is continued in this paper. Several equivalent conditions are given for a proper normal subgroup H of a finite group G to be a generalized Frattini subgroup of G. One such condition on H is that K is nilpotent for each normal subgroup K of G such that K/H is nilpotent. From this result, it follows that the weakly hyper-central normal subgroups of a finite non-nilpotent group G are generalized Frattini subgroups of G.Let H be a generalized Frattini subgroup of G and let K be a subnormal subgroup of G which properly contains H. Then H is a generalized Frattini subgroup of K.Let ϕ(G) be the Frattini subgroup of G. Suppose that G/ϕ(G) is nonnilpotent, but every proper subgroup of G/ϕ(G) is nilpotent. Then ϕ(G) is the unique maximal generalized Frattini subgroup of G.


1994 ◽  
Vol 36 (2) ◽  
pp. 241-247 ◽  
Author(s):  
A. Ballester-Bolinches ◽  
M. D. Pérez-Ramos

Throughout the paper we consider only finite groups.J. C. Beidleman and H. Smith [3] have proposed the following question: “If G is a group and Ha subnormal subgroup of G containing Φ(G), the Frattini subgroup of G, such that H/Φ(G)is supersoluble, is H necessarily supersoluble? “In this paper, we give not only an affirmative answer to this question but also we see that the above result still holds if supersoluble is replaced by any saturated formation containing the class of all nilpotent groups.


Sign in / Sign up

Export Citation Format

Share Document