Groups whose vanishing elements are of odd order

2018 ◽  
Vol 17 (10) ◽  
pp. 1850186
Author(s):  
S. M. Robati

Let [Formula: see text] be a finite group. We say that an element [Formula: see text] in [Formula: see text] is a vanishing element if there exists some irreducible character [Formula: see text] of [Formula: see text] such that [Formula: see text]. In this paper, we study the structure of finite groups whose vanishing elements are of odd order.

Author(s):  
Sajjad M. Robati ◽  
M. R. Darafsheh

Let [Formula: see text] be a finite group. We say that a conjugacy class of [Formula: see text] in [Formula: see text] is vanishing if there exists some irreducible character [Formula: see text] of [Formula: see text] such that [Formula: see text]. In this paper, we show that finite groups with at most six vanishing conjugacy classes are solvable or almost simple groups.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sajjad Mahmood Robati ◽  
Roghayeh Hafezieh Balaman

Abstract For a finite group 𝐺, an element is called a vanishing element of 𝐺 if it is a zero of an irreducible character of 𝐺; otherwise, it is called a non-vanishing element. Moreover, the conjugacy class of an element is called a vanishing class if that element is a vanishing element. In this paper, we describe finite groups whose vanishing class sizes are all prime powers, and on the other hand we show that non-vanishing elements of such a group lie in the Fitting subgroup which is a proof of a conjecture mentioned in [I. M. Isaacs, G. Navarro and T. R. Wolf, Finite group elements where no irreducible character vanishes, J. Algebra 222 (1999), 2, 413–423] under this special restriction on vanishing class sizes.


1969 ◽  
Vol 10 (3-4) ◽  
pp. 359-362
Author(s):  
Nita Bryce

M. Suzuki [3] has proved the following theorem. Let G be a finite group which has an involution t such that C = CG(t) ≅ SL(2, q) and q odd. Then G has an abelian odd order normal subgroup A such that G = CA and C ∩ A = 〈1〉.


1973 ◽  
Vol 25 (4) ◽  
pp. 881-887 ◽  
Author(s):  
E. D. Elgethun

In [8] I. N. Herstein conjectured that all the finite odd order sub-groups of the multiplicative group in a division ring are cyclic. This conjecture was proved false in general by S. A. Amitsur in [1]. In his paper Amitsur classifies all finite groups which can appear as a multiplicative subgroup of a division ring. Let D be a division ring with prime field k and let G be a finite group isomorphic to a multiplicative subgroup of D.


1991 ◽  
Vol 43 (4) ◽  
pp. 792-813 ◽  
Author(s):  
G. O. Michler ◽  
J. B. Olsson

In his fundamental paper [1] J. L. Alperin introduced the idea of a weight in modular representation theory of finite groups G. Let p be a prime. A p-subgroup R is called a radical subgroup of G if R = Op(NG(R)). An irreducible character φ of NG(R) is called a weight character if φ is trivial on R and belongs to a p-block of defect zero of NG(R)/R. The G-conjugacy class of the pair (R, φ) is a weight of G. Let b be the p-block of NG(R) containing φ, and let B be p-block of G. A weight (R, φ) is a B-weight for the block B of G if B = bG, which means that B and b correspond under the Brauer homomorphism. Alperin's conjecture on weights asserts that the number l*(B) of B-weights of a p-block B of a finite group G equals the number l(B) of modular characters of B.


2019 ◽  
Vol 22 (3) ◽  
pp. 515-527
Author(s):  
Bret J. Benesh ◽  
Dana C. Ernst ◽  
Nándor Sieben

AbstractWe study an impartial game introduced by Anderson and Harary. The game is played by two players who alternately choose previously-unselected elements of a finite group. The first player who builds a generating set from the jointly-selected elements wins. We determine the nim-numbers of this game for finite groups of the form{T\times H}, whereTis a 2-group andHis a group of odd order. This includes all nilpotent and hence abelian groups.


1978 ◽  
Vol 25 (3) ◽  
pp. 264-268 ◽  
Author(s):  
Thomas R. Berger ◽  
Marcel Herzog

AbstractLet k be a complex number and let u be an element of a finite group G. Suppose that u does not belong to O(G), the maximal normal subgroup of G of odd order. It is shown that G satisfies X(1) – X(u) = k for every complex nonprincipal irreducible character X in the principal 2-block of G if and only if G/O(G) is isomorphic either to C2, a cyclic group of order 2, or to PSL (2, 2n), n ≧ 2.


2020 ◽  
Vol 115 (6) ◽  
pp. 599-609
Author(s):  
Rachel D. Camina ◽  
Ainhoa Iñiguez ◽  
Anitha Thillaisundaram

AbstractLet w be a word in k variables. For a finite nilpotent group G, a conjecture of Amit states that $$N_w(1)\ge |G|^{k-1}$$ N w ( 1 ) ≥ | G | k - 1 , where for $$g\in G$$ g ∈ G , the quantity $$N_w(g)$$ N w ( g ) is the number of k-tuples $$(g_1,\ldots ,g_k)\in G^{(k)}$$ ( g 1 , … , g k ) ∈ G ( k ) such that $$w(g_1,\ldots ,g_k)={g}$$ w ( g 1 , … , g k ) = g . Currently, this conjecture is known to be true for groups of nilpotency class 2. Here we consider a generalized version of Amit’s conjecture, which states that $$N_w(g)\ge |G|^{k-1}$$ N w ( g ) ≥ | G | k - 1 for g a w-value in G, and prove that $$N_w(g)\ge |G|^{k-2}$$ N w ( g ) ≥ | G | k - 2 for finite groups G of odd order and nilpotency class 2. If w is a word in two variables, we further show that the generalized Amit conjecture holds for finite groups G of nilpotency class 2. In addition, we use character theory techniques to confirm the generalized Amit conjecture for finite p-groups (p a prime) with two distinct irreducible character degrees and a particular family of words. Finally, we discuss the related group properties of being rational and chiral, and show that every finite group of nilpotency class 2 is rational.


1963 ◽  
Vol 22 ◽  
pp. 15-32 ◽  
Author(s):  
W. F. Reynolds

Let H be a normal subgroup of a finite group G, and let ζ be an (absolutely) irreducible character of H. In [7], Clifford studied the irreducible characters X of G whose restrictions to H contain ζ as a constituent. First he reduced this question to the same question in the so-called inertial subgroup S of ζ in G, and secondly he described the situation in S in terms of certain projective characters of S/H. In section 8 of [10], Mackey generalized these results to the situation where all the characters concerned are projective.


2017 ◽  
Vol 16 (11) ◽  
pp. 1750216 ◽  
Author(s):  
Jinshan Zhang ◽  
Changguo Shao ◽  
Zhencai Shen

Let [Formula: see text] be a finite group. A vanishing element of [Formula: see text] is an element [Formula: see text] such that [Formula: see text] for some irreducible complex character [Formula: see text] of [Formula: see text]. Denote by Vo[Formula: see text] the set of the orders of vanishing elements of [Formula: see text]. In this paper, we prove that if [Formula: see text] is a finite group such that Vo[Formula: see text], [Formula: see text], then [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document