Generalized Eulerian 𝒟-modules in char p > 0

Author(s):  
Aarti Patle ◽  
Jyoti Singh

Let [Formula: see text] be a polynomial ring in [Formula: see text] indeterminates with coefficients in the field [Formula: see text] of characteristic [Formula: see text] and [Formula: see text] be the ring of differential operators over [Formula: see text]. In this paper, we introduce the notion of generalized Eulerian [Formula: see text]-modules for characteristic [Formula: see text] and establish their properties. We show that if [Formula: see text] is any graded Lyubeznik functor on the category of modules over [Formula: see text] then [Formula: see text] is a generalized Eulerian [Formula: see text]-module. As a consequence, we prove that all socle elements of module [Formula: see text] are concentrated in degree [Formula: see text] where [Formula: see text] is an irrelevant maximal ideal of [Formula: see text].

1980 ◽  
Vol 32 (1) ◽  
pp. 210-218 ◽  
Author(s):  
A. V. Geramita ◽  
C. A. Weibel

Throughout this paper all rings considered will be commutative, noetherian with identity. If R is such a ring and M is a finitely generated R-module, we shall use v(M) to denote that non-negative integer with the property that M can be generated by v(M) elements but not by fewer.Since every ideal in a noetherian ring is finitely generated, it is a natural question to ask what v(I) is for a given ideal I. Hilbert's Nullstellensatz may be viewed as the first general theorem dealing with this question, answering it when I is a maximal ideal in a polynomial ring over an algebraically closed field.More recently, it has been noticed that the properties of an R-ideal I are intertwined with those of the R-module I/I2.


2014 ◽  
Vol 214 ◽  
pp. 1-52
Author(s):  
Toshiyuki Tanisaki

AbstractWe formulate a Beilinson-Bernstein-type derived equivalence for a quantized enveloping algebra at a root of 1 as a conjecture. It says that there exists a derived equivalence between the category of modules over a quantized enveloping algebra at a root of 1 with fixed regular Harish-Chandra central character and the category of certain twistedD-modules on the corresponding quantized flag manifold. We show that the proof is reduced to a statement about the (derived) global sections of the ring of differential operators on the quantized flag manifold. We also give a reformulation of the conjecture in terms of the (derived) induction functor.


2019 ◽  
Vol 155 (08) ◽  
pp. 1521-1567 ◽  
Author(s):  
Dario Beraldo

The notion of Hochschild cochains induces an assignment from $\mathsf{Aff}$ , affine DG schemes, to monoidal DG categories. We show that this assignment extends, under appropriate finiteness conditions, to a functor $\mathbb{H}:\mathsf{Aff}\rightarrow \mathsf{Alg}^{\text{bimod}}(\mathsf{DGCat})$ , where the latter denotes the category of monoidal DG categories and bimodules. Any functor $\mathbb{A}:\mathsf{Aff}\rightarrow \mathsf{Alg}^{\text{bimod}}(\mathsf{DGCat})$ gives rise, by taking modules, to a theory of sheaves of categories $\mathsf{ShvCat}^{\mathbb{A}}$ . In this paper, we study $\mathsf{ShvCat}^{\mathbb{H}}$ . Loosely speaking, this theory categorifies the theory of $\mathfrak{D}$ -modules, in the same way as Gaitsgory’s original $\mathsf{ShvCat}$ categorifies the theory of quasi-coherent sheaves. We develop the functoriality of $\mathsf{ShvCat}^{\mathbb{H}}$ , its descent properties and the notion of $\mathbb{H}$ -affineness. We then prove the $\mathbb{H}$ -affineness of algebraic stacks: for ${\mathcal{Y}}$ a stack satisfying some mild conditions, the $\infty$ -category $\mathsf{ShvCat}^{\mathbb{H}}({\mathcal{Y}})$ is equivalent to the $\infty$ -category of modules for $\mathbb{H}({\mathcal{Y}})$ , the monoidal DG category of higher differential operators. The main consequence, for ${\mathcal{Y}}$ quasi-smooth, is the following: if ${\mathcal{C}}$ is a DG category acted on by $\mathbb{H}({\mathcal{Y}})$ , then ${\mathcal{C}}$ admits a theory of singular support in $\operatorname{Sing}({\mathcal{Y}})$ , where $\operatorname{Sing}({\mathcal{Y}})$ is the space of singularities of ${\mathcal{Y}}$ . As an application to the geometric Langlands programme, we indicate how derived Satake yields an action of $\mathbb{H}(\operatorname{LS}_{{\check{G}}})$ on $\mathfrak{D}(\operatorname{Bun}_{G})$ , thereby equipping objects of $\mathfrak{D}(\operatorname{Bun}_{G})$ with singular support in $\operatorname{Sing}(\operatorname{LS}_{{\check{G}}})$ .


2002 ◽  
Vol 13 (04) ◽  
pp. 395-413 ◽  
Author(s):  
UMA N. IYER ◽  
TIMOTHY C. MCCUNE

Following the definition given in [6], we compute the ring of quantum differential operators on the polynomial ring in 1 variable. We further study this ring.


2006 ◽  
Vol 183 ◽  
pp. 1-55 ◽  
Author(s):  
Roman Bezrukavnikov ◽  
Ivan Mirković ◽  
Dmitriy Rumynin

In [BMR] we observed that, on the level of derived categories, representations of the Lie algebra of a semisimple algebraic group over a field of finite characteristic with a given (generalized) regular central character can be identified with coherent sheaves on the formal neighborhood of the corresponding (generalized) Springer fiber. In the present paper we treat singular central characters.The basic step is the Beilinson-Bernstein localization of modules with a fixed (generalized) central character λ as sheaves on the partial flag variety corresponding to the singularity of λ. These sheaves are modules over a sheaf of algebras which is a version of twisted crystalline differential operators. We discuss translation functors and intertwining functors. The latter generate an action of the affine braid group on the derived category of modules with a regular (generalized) central character, which intertwines different localization functors. We also describe the standard duality on Lie algebra modules in terms of D-modules and coherent sheaves.


1982 ◽  
Vol 86 ◽  
pp. 203-209 ◽  
Author(s):  
David Eisenbud ◽  
Wolmer Vasconcelos ◽  
Roger Wiegand

An R-module M is a generator (of the category of modules) provided every module is a homomorphic image of a suitable direct sum of copies of M. Equivalently, some M(k) has R as a summand. Except in the last section, all rings are assumed to be commutative, Noetherian domains, and modules are usually finitely generated. In this context generators are exactly those modules that have non-zero free summands locally. Of course, generators can fail to have free summands (e.g., over Dedekind domains), and we ask whether they necessarily have non-zero projective summands. The answer is “yes” for rings of dimension 1, as we point out in § 3, and for the polynomial ring in one variable over a Dedekind domain. In § 1 we show that for 2-dimensional rings the answer is intimately connected with the structure of projective modules. Our main result in the positive direction, Theorem 1.3, grew out of the attempt, in conversations with T. Stafford, to understand the case R = k[x, y]. In § 2 we give examples of rings having generators with no projective summands. The last section contains miscellaneous observations, some of them on rings without chain conditions.


1988 ◽  
Vol 31 (1) ◽  
pp. 41-47
Author(s):  
Kenneth A. Brown ◽  
Thierry Levasseur

Let K be a field of characteristic zero and let Δ ={δ1,…,δn} be a set of commuting K-derivations of the commutative Noetherian K-algebra R. Let S = R[X1,…,Xn] be the corresponding ring of differential operators, so [Xi, r] = Xir − rXi=δi(r and [Xi, Xj]=0, for 1≦i, j≦n. Let M be a maximal ideal of R with R/M of finite dimension over K. The purpose of this note is to describe the groups


2008 ◽  
Vol 58 (2) ◽  
Author(s):  
Eduard Boďa

AbstractLet (R,m) = k[x 1,..., x n](x 1,...,x n) be a local polynomial ring (k being an algebraically closed field), and Q:= (F 1,..., F r)R be a primary ideal in R with respect to a maximal ideal m ⊂ R. In this short note we give a formula for the multiplicity e 0 (QR/(F 1)R, R/(F 1)R).


2021 ◽  
Vol 2090 (1) ◽  
pp. 012096
Author(s):  
Ibrahim Nonkané ◽  
Léonard Todjihounde

Abstract In this note, we study the action of the rational quantum Calogero-Moser system on polynomials rings. This a continuation of our paper [Ibrahim Nonkan 2021 J. Phys.: Conf. Ser. 1730 012129] in which we deal with the polynomial representation of the ring of invariant differential operators. Using the higher Specht polynomials we give a detailed description of the actions of the Weyl algebra associated with the ring of the symmetric polynomial C[x 1,..., xn]Sn on the polynomial ring C[x 1,..., xn ]. In fact, we show that its irreducible submodules over the ring of differential operators invariant under the symmetric group are its submodules generated by higher Specht polynomials over the ring of the symmetric polynomials. We end up studying the polynomial representation of the ring of differential operators invariant under the actions of products of symmetric groups by giving the generators of its simple components, thus we give a differential structure to the higher Specht polynomials.


2014 ◽  
Vol 214 ◽  
pp. 1-52 ◽  
Author(s):  
Toshiyuki Tanisaki

AbstractWe formulate a Beilinson-Bernstein-type derived equivalence for a quantized enveloping algebra at a root of 1 as a conjecture. It says that there exists a derived equivalence between the category of modules over a quantized enveloping algebra at a root of 1 with fixed regular Harish-Chandra central character and the category of certain twisted D-modules on the corresponding quantized flag manifold. We show that the proof is reduced to a statement about the (derived) global sections of the ring of differential operators on the quantized flag manifold. We also give a reformulation of the conjecture in terms of the (derived) induction functor.


Sign in / Sign up

Export Citation Format

Share Document