Rings with fine idempotents

Author(s):  
Grigore Călugăreanu ◽  
Yiqiang Zhou

An idempotent in a ring is called fine (see G. Călugăreanu and T. Y. Lam, Fine rings: A new class of simple rings, J. Algebra Appl. 15(9) (2016) 18) if it is a sum of a nilpotent and a unit. A ring is called an idempotent-fine ring (briefly, an [Formula: see text] ring) if all its nonzero idempotents are fine. In this paper, the properties of [Formula: see text] rings are studied. A notable result is proved: The diagonal idempotents [Formula: see text] ([Formula: see text]) are fine in the matrix ring [Formula: see text] for any unital ring [Formula: see text] and any positive integer [Formula: see text]. This yields many classes of rings over which matrix rings are [Formula: see text].

2004 ◽  
Vol 76 (2) ◽  
pp. 167-174 ◽  
Author(s):  
Konstantin I. Beidar ◽  
Robert Wisbauer

AbstractA subset S of an associative ring R is a uniform insulator for R provided a S b ≠ 0 for any nonzero a, b ∈ R. The ring R is called uniformly strongly prime of bound m if R has uniform insulators and the smallest of those has cardinality m. Here we compute these bounds for matrix rings over fields and obtain refinements of some results of van den Berg in this context.More precisely, for a field F and a positive integer k, let m be the bound of the matrix ring Mk(F), and let n be dimF(V), where V is a subspace of Mk(F) of maximal dimension with respect to not containing rank one matrices. We show that m + n = k2. This implies, for example, that n = k2 − k if and only if there exists a (nonassociative) division algebra over F of dimension k.


Author(s):  
Debraj Roy ◽  
Tikaram Subedi

In this paper, we introduce and study a new class of rings which we call semireversible rings. A ring [Formula: see text] is called semireversible if for any [Formula: see text] implies there exists a positive integer [Formula: see text] such that [Formula: see text]. We observe that the class of semireversible rings strictly lies between the class of central reversible rings and weakly reversible rings. Some relations are provided between semireversible rings and many other known classes of rings. Some extensions of semireversible rings such as ring of fractions, Dorroh extension, subrings of matrix rings are investigated. Finally, we study semireversible rings via modules over them wherein among other results, we prove that a semireversible left (right) SF-ring is strongly regular.


2005 ◽  
Vol 72 (2) ◽  
pp. 317-324
Author(s):  
David Dolžan

The Jacobson group of a ring R (denoted by  = (R)) is the normal subgroup of the group of units of R (denoted by G(R)) obtained by adding 1 to the Jacobson radical of R (J(R)). Coleman and Easdown in 2000 showed that the Jacobson group is complemented in the group of units of any finite commutative ring and also in the group of units a n × n matrix ring over integers modulo ps, when n = 2 and p = 2, 3, but it is not complemented when p ≥ 5. In 2004 Wilcox showed that the answer is positive also for n = 3 and p = 2, and negative in all the remaining cases. In this paper we offer a different proof for Wilcox's results and also generalise the results to a matrix ring over an arbitrary finite commutative ring. We show this by studying the generators and relations that define a matrix ring over a field. We then proceed to examine the complementation of the Jacobson group in the matrix rings over graded rings and prove that complementation depends only on the 0-th grade.


2017 ◽  
Vol 16 (02) ◽  
pp. 1750027 ◽  
Author(s):  
Feride Kuzucuoğlu ◽  
Umut Sayın

Let [Formula: see text] be the ring of all (lower) niltriangular [Formula: see text] matrices over any associative ring [Formula: see text] with identity and [Formula: see text] be the ring of all [Formula: see text] matrices over an ideal [Formula: see text] of [Formula: see text]. We describe all derivations of the matrix ring [Formula: see text].


Author(s):  
A. W. Chatters

It can be very difficult to determine whether or not certain rings are really full matrix rings. For example, let p be an odd prime, let H be the ring of quaternions over the integers localized at p, and setThen T is not presented as a full matrix ring, but there is a subring W of H such that T ≅ M2(W). On the other hand, if we take H to be the ring of quaternions over the integers and form T as above, then it is not known whether T ≅ M2(W) for some ring W. The significance of p being an odd prime is that H/pH is a full 2 x 2 matrix ring, whereas H/2H is commutative. Whether or not a tiled matrix ring such as T above can be re-written as a full matrix ring depends on the sizes of the matrices involved in T and H/pH. To be precise, let H be a local integral domain with unique maximal ideal M and suppose that every one-sided ideal of H is principal. Then H/M ≅ Mk(D) for some positive integer k and division ring D. Given a positive integer n. let T be the tiled matrix ring consisting of all n x n matrices with elements of H on and below the diagonal and elements of M above the diagonal. We shall show in Theorem 2.5 that there is a ring W such that T ≅ Mn(W) if and only if n divides k. An important step in the proof is to show that certain idempotents in T/J(T) can be lifted to idempotents in T, where J(T) is the Jacobson radical of T. This technique for lifting idempotents also makes it possible to show that there are (k + n − 1)!/ k!(n−1)! isomorphism types of finitely generated indecomposable projective right T-modules (Theorem 2·10).


Author(s):  
John E. Van den Berg

AbstractA nonzero ring R is said to be uniformly strongly prime (of bound n) if n is the smallest positive integer such that for some n-element subset X of R we have xXy ≠ 0 whenever 0 ≠ x, y ∈ R. The study of uniformly strongly prime rings reduces to that of orders in matrix rings over division rings, except in the case n = 1. This paper is devoted primarily to an investigation of uniform bounds of primeness in matrix rings over fields. It is shown that the existence of certain n-dimensional nonassociative algebras over a field F decides the uniform bound of the n × n matrix ring over F.


Author(s):  
M. Sivagami ◽  
T. Tamizh Chelvam

Let [Formula: see text] be a commutative ring with identity, [Formula: see text] be a positive integer and [Formula: see text] be the set of all [Formula: see text] matrices over [Formula: see text] For a matrix [Formula: see text] Tr[Formula: see text] is the trace of [Formula: see text] The trace graph of the matrix ring [Formula: see text] denoted by [Formula: see text] is the simple undirected graph with vertex set [Formula: see text][Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if Tr[Formula: see text] The ideal-based trace graph of the matrix ring [Formula: see text] with respect to an ideal [Formula: see text] of [Formula: see text] denoted by [Formula: see text] is the simple undirected graph with vertex set [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if Tr[Formula: see text] In this paper, we investigate some properties and structure of [Formula: see text] Further, it is proved that both [Formula: see text] and [Formula: see text] are Hamiltonian.


2020 ◽  
Vol 11 (2) ◽  
pp. 331-338
Author(s):  
Puguh Wahyu Prasetyo ◽  
Dian Ariesta Yuwaningsih ◽  
Burhanudin Arif Nurnugroho

A radical class of rings is called a supernilpotent radicals if it is hereditary and it contains the class  for some positive integer  In this paper, we start by exploring the concept of Tychonoff space to build a supernilpotent radical. Let  be a Tychonoff space that does not contain any isolated point. The set  of all continuous real-valued functions defined on  is a prime essential ring. Finally, we can show that the class  of rings is a supernilpotent radical class containing the matrix ring .  


2019 ◽  
Vol 26 (01) ◽  
pp. 83-92 ◽  
Author(s):  
Umut Sayın ◽  
Feride Kuzucuoğlu

Let K be a 2-torsion free ring with identity and Rn(K, J) be the ring of all n × n matrices over K such that the entries on and above the main diagonal are elements of an ideal J of K. We describe all Jordan derivations of the matrix ring Rn(K, J) in this paper. The main result states that every Jordan derivation Δ of Rn(K, J) is of the form Δ = D + Ω, where D is a derivation of Rn(K, J) and Ω is an extremal Jordan derivation of Rn(K, J).


Author(s):  
S. T. Dougherty ◽  
Adrian Korban ◽  
Serap Şahinkaya ◽  
Deniz Ustun

AbstractIn this work, we study codes generated by elements that come from group matrix rings. We present a matrix construction which we use to generate codes in two different ambient spaces: the matrix ring $$M_k(R)$$ M k ( R ) and the ring R,  where R is the commutative Frobenius ring. We show that codes over the ring $$M_k(R)$$ M k ( R ) are one sided ideals in the group matrix ring $$M_k(R)G$$ M k ( R ) G and the corresponding codes over the ring R are $$G^k$$ G k -codes of length kn. Additionally, we give a generator matrix for self-dual codes, which consist of the mentioned above matrix construction. We employ this generator matrix to search for binary self-dual codes with parameters [72, 36, 12] and find new singly-even and doubly-even codes of this type. In particular, we construct 16 new Type I and 4 new Type II binary [72, 36, 12] self-dual codes.


Sign in / Sign up

Export Citation Format

Share Document