scholarly journals Twisted conjugacy classes in twisted Chevalley groups

Author(s):  
Sushil Bhunia ◽  
Pinka Dey ◽  
Amit Roy

Let [Formula: see text] be a group and [Formula: see text] be an automorphism of [Formula: see text]. Two elements [Formula: see text] are said to be [Formula: see text]-twisted conjugate if [Formula: see text] for some [Formula: see text]. We say that a group [Formula: see text] has the [Formula: see text]-property if the number of [Formula: see text]-twisted conjugacy classes is infinite for every automorphism [Formula: see text] of [Formula: see text]. In this paper, we prove that twisted Chevalley groups over a field [Formula: see text] of characteristic zero have the [Formula: see text]-property as well as the [Formula: see text]-property if [Formula: see text] has finite transcendence degree over [Formula: see text] or [Formula: see text] is periodic.

2015 ◽  
Vol 53 (6) ◽  
pp. 481-501 ◽  
Author(s):  
T. R. Nasybullov

2019 ◽  
Vol 22 (2) ◽  
pp. 253-266 ◽  
Author(s):  
Timur Nasybullov

Abstract Let R be an integral domain of characteristic zero. In this note we study the Reidemeister spectrum of the group {{\rm UT}_{n}(R)} of unitriangular matrices over R. We prove that if {R^{+}} is finitely generated and {n>2|R^{*}|} , then {{\rm UT}_{n}(R)} possesses the {R_{\infty}} -property, i.e. the Reidemeister spectrum of {{\rm UT}_{n}(R)} contains only {\infty} , however, if {n\leq|R^{*}|} , then the Reidemeister spectrum of {{\rm UT}_{n}(R)} has nonempty intersection with {\mathbb{N}} . If R is a field and {n\geq 3} , then we prove that the Reidemeister spectrum of {{\rm UT}_{n}(R)} coincides with {\{1,\infty\}} , i.e. in this case {{\rm UT}_{n}(R)} does not possess the {R_{\infty}} -property.


2015 ◽  
Vol 25 (08) ◽  
pp. 1275-1299 ◽  
Author(s):  
Melanie Stein ◽  
Jennifer Taback ◽  
Peter Wong

Let [Formula: see text] denote the group whose Cayley graph with respect to a particular generating set is the Diestel–Leader graph [Formula: see text], as described by Bartholdi, Neuhauser and Woess. We compute both [Formula: see text] and [Formula: see text] for [Formula: see text], and apply our results to count twisted conjugacy classes in these groups when [Formula: see text]. Specifically, we show that when [Formula: see text], the groups [Formula: see text] have property [Formula: see text], that is, every automorphism has an infinite number of twisted conjugacy classes. In contrast, when [Formula: see text] the lamplighter groups [Formula: see text] have property [Formula: see text] if and only if [Formula: see text].


2008 ◽  
Vol 134 (1) ◽  
pp. 61-73 ◽  
Author(s):  
Alexander Fel’shtyn ◽  
Yuriy Leonov ◽  
Evgenij Troitsky

Author(s):  
Alexander Fel'shtyn ◽  
Evgenij Troitsky

AbstractThe purpose of the present mostly expository paper (based mainly on [17, 18, 40, 16, 11]) is to present the current state of the following conjecture of A. Fel'shtyn and R. Hill [13], which is a generalization of the classical Burnside theorem.Let G be a countable discrete group, φ one of its automorphisms, R(φ) the number of φ-conjugacy (or twisted conjugacy) classes, and S(φ) = #Fix the number of φ-invariant equivalence classes of irreducible unitary representations. If one of R(φ) and S(φ) is finite, then it is equal to the other.This conjecture plays a important role in the theory of twisted conjugacy classes (see [26], [10]) and has very important consequences in Dynamics, while its proof needs rather sophisticated results from Functional and Noncommutative Harmonic Analysis.First we prove this conjecture for finitely generated groups of type I and discuss its applications.After that we discuss an important example of an automorphism of a type II1 group which disproves the original formulation of the conjecture.Then we prove a version of the conjecture for a wide class of groups, including almost polycyclic groups (in particular, finitely generated groups of polynomial growth). In this formulation the role of an appropriate dual object plays the finite-dimensional part of the unitary dual. Some counter-examples are discussed.Then we begin a discussion of the general case (which also needs new definition of the dual object) and prove the weak twisted Burnside theorem for general countable discrete groups. For this purpose we prove a noncommutative version of Riesz-Markov-Kakutani representation theorem.Finally we explain why the Reidemeister numbers are always infinite for Baumslag-Solitar groups.


2014 ◽  
Vol 17 (1) ◽  
pp. 109-122 ◽  
Author(s):  
Simon M. Goodwin ◽  
Peter Mosch ◽  
Gerhard Röhrle

AbstractLet$G(q)$be a finite Chevalley group, where$q$is a power of a good prime$p$, and let$U(q)$be a Sylow$p$-subgroup of$G(q)$. Then a generalized version of a conjecture of Higman asserts that the number$k(U(q))$of conjugacy classes in$U(q)$is given by a polynomial in$q$with integer coefficients. In [S. M. Goodwin and G. Röhrle,J. Algebra321 (2009) 3321–3334], the first and the third authors of the present paper developed an algorithm to calculate the values of$k(U(q))$. By implementing it into a computer program using$\mathsf{GAP}$, they were able to calculate$k(U(q))$for$G$of rank at most five, thereby proving that for these cases$k(U(q))$is given by a polynomial in$q$. In this paper we present some refinements and improvements of the algorithm that allow us to calculate the values of$k(U(q))$for finite Chevalley groups of rank six and seven, except$E_7$. We observe that$k(U(q))$is a polynomial, so that the generalized Higman conjecture holds for these groups. Moreover, if we write$k(U(q))$as a polynomial in$q-1$, then the coefficients are non-negative.Under the assumption that$k(U(q))$is a polynomial in$q-1$, we also give an explicit formula for the coefficients of$k(U(q))$of degrees zero, one and two.


1987 ◽  
Vol 106 ◽  
pp. 121-142 ◽  
Author(s):  
Yuval Z. Flicker

Let E/F be an unramified cyclic extension of local non-archimedean fields, G a connected reductive group over F, K(F) (resp. K(E)) a hyper-special maximal compact subgroup of G(F) (resp. G(E)), and H(F) (resp. H(E)) the Hecke convolution algebra of compactly-supported complex-valued K(F) (resp. G(E))-biinvariant functions on G(F) (resp. G(E)). Then the theory of the Satake transform defines (see § 2) a natural homomorphism H(E) → H(F), θ→f. There is a norm map N from the set of stable twisted conjugacy classes in G(E) to the set of stable conjugacy classes in G(F); it is an injection (see [Ko]). Let Ω‱(x, f) denote the stable orbital integral of f in H(F) at the class x, and Ω‱(y, θ) the stable twisted orbital integral of θ in H(E) at the class y.


Sign in / Sign up

Export Citation Format

Share Document