On rings whose quasi-injective modules are injective or semisimple

Author(s):  
Bülent Saraç

Two obvious classes of quasi-injective modules are those of semisimples and injectives. In this paper, we study rings with no quasi-injective modules other than semisimples and injectives. We prove that such rings fall into three classes of rings, namely, (i) QI-rings, (ii) rings with no middle class, or (iii) rings that decompose into a direct product of a semisimple Artinian ring and a strongly prime ring. Thus, we restrict our attention to only strongly prime rings and consider hereditary Noetherian prime rings to shed some light on this mysterious case. In particular, we prove that among these rings, QIS-rings which are not of type (i) or (ii) above are precisely those hereditary Noetherian prime rings which are idealizer rings from non-simple QI-overrings.

Author(s):  
Nil Orhan Ertaş ◽  
Rachid Tribak

We prove that a ring [Formula: see text] has a module [Formula: see text] whose domain of projectivity consists of only some injective modules if and only if [Formula: see text] is a right noetherian right [Formula: see text]-ring. Also, we consider modules which are projective relative only to a subclass of max modules. Such modules are called max-poor modules. In a recent paper Holston et al. showed that every ring has a p-poor module (that is a module whose projectivity domain consists precisely of the semisimple modules). So every ring has a max-poor module. The structure of all max-poor abelian groups is completely determined. Examples of rings having a max-poor module which is neither projective nor p-poor are provided. We prove that the class of max-poor [Formula: see text]-modules is closed under direct summands if and only if [Formula: see text] is a right Bass ring. A ring [Formula: see text] is said to have no right max-p-middle class if every right [Formula: see text]-module is either projective or max-poor. It is shown that if a commutative noetherian ring [Formula: see text] has no right max-p-middle class, then [Formula: see text] is the ring direct sum of a semisimple ring [Formula: see text] and a ring [Formula: see text] which is either zero or an artinian ring or a one-dimensional local noetherian integral domain such that the quotient field [Formula: see text] of [Formula: see text] has a proper [Formula: see text]-submodule which is not complete in its [Formula: see text]-topology. Then we show that a commutative noetherian hereditary ring [Formula: see text] has no right max-p-middle class if and only if [Formula: see text] is a semisimple ring.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammad Ashraf ◽  
Sajad Ahmad Pary ◽  
Mohd Arif Raza

AbstractLet {\mathscr{R}} be a prime ring, {\mathscr{Q}_{r}} the right Martindale quotient ring of {\mathscr{R}} and {\mathscr{C}} the extended centroid of {\mathscr{R}}. In this paper, we discuss the relationship between the structure of prime rings and the behavior of skew derivations on multilinear polynomials. More precisely, we investigate the m-potent commutators of skew derivations involving multilinear polynomials, i.e.,\big{(}[\delta(f(x_{1},\ldots,x_{n})),f(x_{1},\ldots,x_{n})]\big{)}^{m}=[% \delta(f(x_{1},\ldots,x_{n})),f(x_{1},\ldots,x_{n})],where {1<m\in\mathbb{Z}^{+}}, {f(x_{1},x_{2},\ldots,x_{n})} is a non-central multilinear polynomial over {\mathscr{C}} and δ is a skew derivation of {\mathscr{R}}.


2013 ◽  
Vol 31 (2) ◽  
pp. 113
Author(s):  
M. Rais Khan ◽  
Deepa Arora ◽  
M. Ali Khan

Let R be a prime ring and F and G be generalized derivations of R with associated derivations d and g respectively. In the present paper, we shall investigate the commutativity of R admitting generalized derivations F and G satisfying any one of the properties: (i) F(x)x = x G(x), (ii) F(x2) = x2 , (iii) [F(x), y] = [x, G(y)], (iv) d(x)F(y) = xy, (v) F([x, y]) = [F(x), y] + [d(y), x] and (vi) F(x ◦ y) = F(x) ◦ y − d(y) ◦ x for all x, y in some appropriate subset of R.


2019 ◽  
Vol 17 (72) ◽  
pp. 87-92
Author(s):  
Kassim A. Jassim ◽  
Ali Kareem Kadhim
Keyword(s):  

     Let R be a prime ring and U be a (σ,τ)-left Jordan ideal .Then in this paper, we proved the following , if aU Z (Ua Z), a R, then a = 0 or U Z. If aU C s,t (Ua  C s,t), a R, then  either a = 0   or   U Z. If  0 ≠ [U,U] s,t .Then U Z. If  0≠[U,U] s,t C s,t, then   U Z  .Also, we checked the converse  some of these theorems and showed that are not true, so we give an example for them.


2020 ◽  
Vol 53 (2) ◽  
pp. 125-133
Author(s):  
G.S. Sandhu

Let R be a prime ring. In this note, we describe the possible forms of multiplicative (generalized)-derivations of R that act as n-homomorphism or n-antihomomorphism on nonzero ideals of R. Consequently, from the given results one can easily deduce the results of Gusić ([7]).


2014 ◽  
Vol 11 (2) ◽  
pp. 211-219
Author(s):  
Baghdad Science Journal
Keyword(s):  

The main purpose of this work is to introduce the concept of higher N-derivation and study this concept into 2-torsion free prime ring we proved that:Let R be a prime ring of char. 2, U be a Jordan ideal of R and be a higher N-derivation of R, then , for all u U , r R , n N .


2012 ◽  
Vol 31 ◽  
pp. 65-70
Author(s):  
Kalyan Kumar Dey ◽  
Akhil Chandra Paul

Let M be a prime ?-ring satisfying a certain assumption (*). An additive mapping f : M ? M is a semi-derivation if f(x?y) = f(x)?g(y) + x?f(y) = f(x)?y + g(x)?f(y) and f(g(x)) = g(f(x)) for all x, y?M and ? ? ?, where g : M?M is an associated function. In this paper, we generalize some properties of prime rings with semi-derivations to the prime &Gamma-rings with semi-derivations. 2000 AMS Subject Classifications: 16A70, 16A72, 16A10.DOI: http://dx.doi.org/10.3329/ganit.v31i0.10309GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 31 (2011) 65-70


2007 ◽  
Vol 06 (02) ◽  
pp. 337-353 ◽  
Author(s):  
MAHMOOD BEHBOODI

Let M be a left R-module. A proper submodule P of M is called classical prime if for all ideals [Formula: see text] and for all submodules N ⊆ M, [Formula: see text] implies that [Formula: see text] or [Formula: see text]. We generalize the Baer–McCoy radical (or classical prime radical) for a module [denoted by cl.rad R(M)] and Baer's lower nilradical for a module [denoted by Nil *(RM)]. For a module RM, cl.rad R(M) is defined to be the intersection of all classical prime submodules of M and Nil *(RM) is defined to be the set of all strongly nilpotent elements of M (defined later). It is shown that, for any projective R-module M, cl.rad R(M) = Nil *(RM) and, for any module M over a left Artinian ring R, cl.rad R(M) = Nil *(RM) = Rad (M) = Jac (R)M. In particular, if R is a commutative Noetherian domain with dim (R) ≤ 1, then for any module M, we have cl.rad R(M) = Nil *(RM). We show that over a left bounded prime left Goldie ring, the study of Baer–McCoy radicals of general modules reduces to that of torsion modules. Moreover, over an FBN prime ring R with dim (R) ≤ 1 (or over a commutative domain R with dim (R) ≤ 1), every semiprime submodule of any module is an intersection of classical prime submodules.


Author(s):  
Deepak Kumar ◽  
Bharat Bhushan ◽  
Gurninder S. Sandhu

Let [Formula: see text] be a prime ring with involution ∗ of the second kind. An additive mapping [Formula: see text] is called generalized derivation if there exists a unique derivation [Formula: see text] such that [Formula: see text] for all [Formula: see text] In this paper, we investigate the structure of [Formula: see text] and describe the possible forms of generalized derivations of [Formula: see text] that satisfy specific ∗-differential identities. Precisely, we study the following situations: (i) [Formula: see text] (ii) [Formula: see text] (iii) [Formula: see text] (iv) [Formula: see text] for all [Formula: see text] Moreover, we construct some examples showing that the restrictions imposed in the hypotheses of our theorems are not redundant.


2018 ◽  
Vol 25 (04) ◽  
pp. 681-700
Author(s):  
Basudeb Dhara ◽  
Vincenzo De Filippis

Let R be a prime ring of characteristic different from 2, Q be its maximal right ring of quotients, and C be its extended centroid. Suppose that [Formula: see text] is a non-central multilinear polynomial over C, [Formula: see text], and F, G are two b-generalized derivations of R. In this paper we describe all possible forms of F and G in the case [Formula: see text] for all [Formula: see text] in Rn.


Sign in / Sign up

Export Citation Format

Share Document