INVESTIGATING EXPRESSION OF AUTOPHAGY-ASSOCIATED PROTEINS LEVEL IN RATS WITH ACUTE LUNG INJURY INDUCED BY REMOTE LIMB ISCHEMIA-REPERFUSION

2016 ◽  
Vol 16 (03) ◽  
pp. 1650019
Author(s):  
YUEBING LI ◽  
YUQING KANG ◽  
KELVIN KL WONG ◽  
DHANJOO N. GHISTA ◽  
MIAONING GU

Objective: To explore the early expression of autophagy-associated proteins in lung tissues in acute lung injury (ALI) induced by remote limb ischemia-reperfusion (LIR) by using rats as our test specimens. Method: A total of 48 adult male Sprague-Dawley (SD) rats with weights in the range of 220–250[Formula: see text]g were designated as LIR models, and divided randomly into two groups of 24 each: Sham group and ischemia-reperfusion (I/R) group. Then, each group was divided into four subgroups at the end of 0, 2, 4, 8[Formula: see text]h of reperfusion, after 3[Formula: see text]h of ischemia. The rats were anesthetized by pentobarbital sodium. The serum lactate dehydrogenases (LDH) were detected with enzyme linked immunosorbent assay (ELISA), and the pathological changes of lung tissues were observed by using immunofluorescence techniques. The expression of Beclin1 protein and Atg5 mRNA in the lung tissues were detected by using reverse transcription polymerase chain reaction (RT-PCR), and analyzed by 2[Formula: see text] method; Microtubules associated protein light chain 3 (LC3) in the lung tissues were detected by Western blot test. Result: The levels of serum LDH in I/R groups were much higher than those in Sham groups ([Formula: see text]), which showed that the rats models of LIR were successful. Immunofluorescence examination demonstrated injuries of lung tissues, thickening of alveolar septum and partial consolidation in I/R groups; however, this damage was not observed significantly in Sham groups. The expression of Beclin1 and Atg5 mRNA, LC3-II and the ratio of LC3-II/GAPDH in lung tissues were very much higher at 4 and 8[Formula: see text]h in IR groups ([Formula: see text] or [Formula: see text]), and were significantly higher at the same time compared with Sham groups ([Formula: see text] or [Formula: see text]). Conclusion: LIR causes ALI to induce increased autophagy and high expression of its relevant proteins; while continuous I/R can also cause autophagy inhibition.

2019 ◽  
Vol 48 (4) ◽  
pp. 030006051989243
Author(s):  
HaiZou bo ◽  
XiaoSun feng

Objective To investigate the influence of curcumin on the Notch2/Hes-1 pathway after pulmonary injury induction via limb ischemia–reperfusion (I/R). Methods Adult male Sprague–Dawley rats were randomly divided into four groups (n = 30 each): sham, I/R, curcumin post-treatment (I/R+Cur), and inhibitor (I/R+DAPT). Hind-limb ischemia was induced for 4 hours, followed by reperfusion for 4 hours. After ischemia, curcumin (200 mg/kg) or DAPT (0.5 µm) was injected intraperitoneally in the I/R+Cur or I/R+DAPT group, respectively. PaO2 was examined after 4 hours of reperfusion. Pathological changes in the lung and the apoptotic index (AI) were examined. Lung malondialdehyde (MDA), tumor necrosis factor (TNF)-α, and interleukin (IL)-1β levels, the wet/dry (W/D) ratio, semi-quantitative score of lung injury (SSLI), and Notch2 protein and Hes-1 mRNA expression were also examined. Results In the I/R group, inflammatory changes were observed, AI increased, and MDA, SSLI, W/D, TNF-α, IL-1β, Notch2, and Hes1-mRNA expression increased, while PaO2 decreased compared with the Sham group. Pathological changes in the I/R+Cur group were reversed. All indexes in the I/R+DAPT and I/R+Cur group were similar. Conclusion Curcumin post-treatment reduced I/R-induced lung injury in rats. Its mechanism may be related to the inhibition of Notch2/Hes-1 signaling pathway and the release of inflammatory factors.


2013 ◽  
Vol 27 (8) ◽  
pp. 389-397 ◽  
Author(s):  
Xin-Li Huang ◽  
Yang Liu ◽  
Jun-Lin Zhou ◽  
Yong-Chao Qin ◽  
Xiao-Bao Ren ◽  
...  

Shock ◽  
2013 ◽  
Vol 40 (5) ◽  
pp. 420-429 ◽  
Author(s):  
Li-Nan Chen ◽  
Xiu-Hong Yang ◽  
Daniel H. Nissen ◽  
Yan-Yan Chen ◽  
Li-Jun Wang ◽  
...  

2021 ◽  
Vol 19 (12) ◽  
pp. 2559-2563
Author(s):  
Hongcheng Zang ◽  
Gang Shao

Purpose: To investigate the effect of dexmedetomidine in a rat model of acute lung injury (ALI), and the underlying mechanism. Methods: Acute lung injury (ALI) was induced in adult male Sprague Dawley rats (n = 27) using lipopolysaccharide (LPS). Three rat groups were used (9 rats/group): untreated control, LPS and treatment groups. Pathological lesions in rat pulmonary tissues were assessed and inflammatory scores determined. The levels TNF-α and IL-6 in BALF were determined using their respective enzyme-linked immunosorbent assay (ELISA) kits, while protein levels of p-IκB and NF-κB p65 were assessed by Western blotting. Results: Lung tissue damage was markedly mitigated in treatment mice, relative to LPS mice (p < 0.05). Inflammatory scores and population of neutrophils and macrophages increased significantly in LPS mice, relative to control, but decreased by dexmedetomidine exposure (p < 0.05). Similarly, TNF-α and IL-6 levels in pulmonary tissue homogenates of LPS rats were increased, relative to control rats, but were downregulated by dexmedetomidine exposure (p < 0.05). Moreover, dexmedetomidine downregulated the expressions of p-IκB and NF-κB p65 in pulmonary tissues (p < 0.05). Conclusion: Dexmedetomidine mitigates LPS-induced ALI in rats by blocking the activation of NF-κB and IκB, coupled with inhibition of the secretion of TNF-α and IL-6. Keywords: Acute lung injury, Dexmedetomidine, Inflammatory cytokines, NF-κB pathway, Sepsis


2002 ◽  
Vol 35 (6) ◽  
pp. 1264-1273 ◽  
Author(s):  
Denis W. Harkin ◽  
Aires A.B. Barros D'Sa ◽  
Kevin McCallion ◽  
Margaret Hoper ◽  
F.Charles Campbell

Sign in / Sign up

Export Citation Format

Share Document