Genetic Algorithm-Enabled Particle Swarm Optimization (PSOGA)-Based Task Scheduling in Cloud Computing Environment

2018 ◽  
Vol 17 (04) ◽  
pp. 1237-1267 ◽  
Author(s):  
Mohit Agarwal ◽  
Gur Mauj Saran Srivastava

Task scheduling is one of the most difficult problems which is associated with cloud computing. Due to its nature, as it belongs to nondeterministic polynomial time (NP)-hard class of problem. Various heuristic as well as meta-heuristic approaches have been used to find the optimal solution. Task scheduling basically deals with the allocation of the task to the most efficient machine for optimal utilization of the computing resources and results in better makespan. As per literature, various meta-heuristic algorithms like genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO) and their other hybrid techniques have been applied. Through this paper, we are presenting a novel meta-heuristic technique — genetic algorithm enabled particle swarm optimization (PSOGA), a hybrid version of PSO and GA algorithm. PSOGA uses the diversification property of PSO and intensification property of the GA. The proposed algorithm shows its supremacy over other techniques which are taken into consideration by presenting less makespan time in majority of the cases which leads up to 22.2% improvement in performance of the system and also establishes that proposed PSOGA algorithm converges faster than the others.

2014 ◽  
Vol 926-930 ◽  
pp. 3236-3239 ◽  
Author(s):  
Mei Geng Huang ◽  
Zhi Qi Ou

The cloud computing task scheduling field representative algorithms was introduced and analyzed : genetic algorithm, particle swarm optimization, ant colony algorithm. Parallelism and global search solution space is the characteristic of genetic algorithm, genetic iterations difficult to proceed when genetic individuals are very similar; Particle swarm optimization in the initial stage is fast, slow convergence speed in the later stage ; Ant colony algorithm optimization ability is good, slow convergence speed in its first stage; Finally, the summary and prospect the future research direction.


2020 ◽  
Vol 10 (1) ◽  
pp. 56-64 ◽  
Author(s):  
Neeti Kashyap ◽  
A. Charan Kumari ◽  
Rita Chhikara

AbstractWeb service compositions are commendable in structuring innovative applications for different Internet-based business solutions. The existing services can be reused by the other applications via the web. Due to the availability of services that can serve similar functionality, suitable Service Composition (SC) is required. There is a set of candidates for each service in SC from which a suitable candidate service is picked based on certain criteria. Quality of service (QoS) is one of the criteria to select the appropriate service. A standout amongst the most important functionality presented by services in the Internet of Things (IoT) based system is the dynamic composability. In this paper, two of the metaheuristic algorithms namely Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are utilized to tackle QoS based service composition issues. QoS has turned into a critical issue in the management of web services because of the immense number of services that furnish similar functionality yet with various characteristics. Quality of service in service composition comprises of different non-functional factors, for example, service cost, execution time, availability, throughput, and reliability. Choosing appropriate SC for IoT based applications in order to optimize the QoS parameters with the fulfillment of user’s necessities has turned into a critical issue that is addressed in this paper. To obtain results via simulation, the PSO algorithm is used to solve the SC problem in IoT. This is further assessed and contrasted with GA. Experimental results demonstrate that GA can enhance the proficiency of solutions for SC problem in IoT. It can also help in identifying the optimal solution and also shows preferable outcomes over PSO.


Author(s):  
Javad Ansarifar ◽  
Reza Tavakkoli-Moghaddam ◽  
Faezeh Akhavizadegan ◽  
Saman Hassanzadeh Amin

This article formulates the operating rooms considering several constraints of the real world, such as decision-making styles, multiple stages for surgeries, time windows for resources, and specialty and complexity of surgery. Based on planning, surgeries are assigned to the working days. Then, the scheduling part determines the sequence of surgeries per day. Moreover, an integrated fuzzy possibilistic–stochastic mathematical programming approach is applied to consider some sources of uncertainty, simultaneously. Net revenues of operating rooms are maximized through the first objective function. Minimizing a decision-making style inconsistency among human resources and maximizing utilization of operating rooms are considered as the second and third objectives, respectively. Two popular multi-objective meta-heuristic algorithms including Non-dominated Sorting Genetic Algorithm and Multi-Objective Particle Swarm Optimization are utilized for solving the developed model. Moreover, different comparison metrics are applied to compare the two proposed meta-heuristics. Several test problems based on the data obtained from a public hospital located in Iran are used to display the performance of the model. According to the results, Non-dominated Sorting Genetic Algorithm-II outperforms the Multi-Objective Particle Swarm Optimization algorithm in most of the utilized metrics. Moreover, the results indicate that our proposed model is more effective and efficient to schedule and plan surgeries and assign resources than manual scheduling.


2015 ◽  
Vol 6 (1) ◽  
pp. 23-34
Author(s):  
Dushhyanth Rajaram ◽  
Himanshu Akhria ◽  
S. N. Omkar

This paper primarily deals with the optimization of airfoil topology using teaching-learning based optimization, a recently proposed heuristic technique, investigating performance in comparison to Genetic Algorithm and Particle Swarm Optimization. Airfoil parametrization and co-ordinate manipulations are accomplished using piecewise b-spline curves using thickness and camber for constraining the design space. The aimed objective of the exercise was easy computation, and incorporation of the scheme into the conceptual design phase of a low-reynolds number UAV for the SAE Aerodesign Competition. The 2D aerodynamic analyses and optimization routine are accomplished using the Xfoil code and MATLAB respectively. The effects of changing the number of design variables is presented. Also, the investigation shows better performance in the case of Teaching-Learning based optimization and Particle swarm optimization in comparison to Genetic Algorithm.


Sign in / Sign up

Export Citation Format

Share Document