Electronic and magnetic control in fully-hydrogenated boron nitride

2017 ◽  
Vol 16 (04) ◽  
pp. 1750033 ◽  
Author(s):  
Yuan You

We investigate the effects of vacancies on the electronic and magnetic properties in fully-hydrogenated boron nitride sheet by performing first-principles calculation. Our results reveal that this sheet fosters magnetic materials with finite magnetic moment under certain vacancies. This phenomenon can be explained by the charge redistribution in which the unpaired electrons in bands determine the magnitude of magnetic moment and thus the ground state of the systems. The magnetic moment can be tuned from 0 to 2 by introducing different vacancies. This picture explicitly demonstrates that the type of vacancy plays an important role in determining nonmagnetic or magnetic materials of fully-hydrogenated boron nitride sheet, indicating their functionalities and possible applications in spintronics.

2016 ◽  
Vol 3 (1) ◽  
pp. 89 ◽  
Author(s):  
Shalika Ram Bhandari ◽  
Ram Kumar Thapa ◽  
Madhav Prasad Ghimire

<p>Electronic and magnetic properties of La<sub>4</sub>Ba<sub>2</sub>Cu<sub>2</sub>O<sub>10</sub> had been studied by first-principles density functional theory (DFT). Based on the DFT calculation La<sub>4</sub>Ba<sub>2</sub>Cu<sub>2</sub>O<sub>10</sub> is found to have a ferromagnetic (FM) ground state. The material undergo charge-transfer type insulator to Mott-Hubbard type insulator transition which happens due to strong correlation in La-4f and Cu-3d states. Our results show that the 3d electrons of Cu hybridize strongly with O-2p states near the Fermi level giving rise to the insulating state of La<sub>4</sub>Ba<sub>2</sub>Cu<sub>2</sub>O<sub>10</sub>. Our study suggests that the enhanced magnetic moment is a result of itinerant exchange rather than the exchange interaction involving individual ions of Cu atoms. The total magnetic moment calculated in the present studies is 2 μ<sub>B</sub> per unit cell for La<sub>4</sub>Ba<sub>2</sub>Cu<sub>2</sub>O<sub>10</sub>.</p><p>Journal of Nepal Physical Society Vol.3(1) 2015: 89-96</p>


2019 ◽  
Vol 33 (22) ◽  
pp. 1950254 ◽  
Author(s):  
Zhi Li ◽  
Zhen Zhao ◽  
Qi Wang ◽  
Tong-Tong Shi

To understand sulfide inclusions in the steel industry, the structures, stabilities, electronic and magnetic properties of the Mn[Formula: see text]S and Mn[Formula: see text]S2 (n=1–6) clusters are investigated by using first-principles. The results show that the S atoms prefer to occupy the outside surface center of the Mn[Formula: see text] (n = 3–6) clusters. Chiral isomers are occurred to the Mn5S2 isomers. The Mn2S, Mn2S2 clusters are more stable than their neighbors. However, the MnS, S2, and Mn5I2 clusters possess higher dynamic stability than their neighbors by the HOMO–LUMO gaps. The Mn[Formula: see text]S and Mn[Formula: see text]S2 (n = 1–6) clusters prefer to spontaneous generation by Gibbs free energy. A few 4s orbital electrons of Mn atoms transferred to the S atoms by Mülliken population analysis. For the other Mn[Formula: see text]S (n = 1–6) clusters, the spin density (17.256) of the ground-state Mn6S clusters is the largest. For the Mn[Formula: see text]S2 (n = 1–6) clusters, the total spin (9.604) of the ground-state Mn2S2 cluster is the largest.


2017 ◽  
Vol 19 (23) ◽  
pp. 15021-15029 ◽  
Author(s):  
Yusheng Wang ◽  
Nahong Song ◽  
Min Jia ◽  
Dapeng Yang ◽  
Chikowore Panashe ◽  
...  

First principles calculations based on density functional theory were carried out to study the electronic and magnetic properties of C2N nanoribbons (C2NNRs).


2015 ◽  
Vol 90 (6) ◽  
pp. 065803 ◽  
Author(s):  
Sandeep ◽  
D P Rai ◽  
A Shankar ◽  
M P Ghimire ◽  
R Khenata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document