transverse electric
Recently Published Documents


TOTAL DOCUMENTS

773
(FIVE YEARS 124)

H-INDEX

40
(FIVE YEARS 6)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 665
Author(s):  
Riccardo Cacocciola ◽  
Badreddine Ratni ◽  
Nicolas Mielec ◽  
Emmanuel Mimoun ◽  
Shah Nawaz Burokur

A high-index dielectric radome seam is camouflaged with respect to a low-index dielectric radome panel by tuning the seam with carefully engineered metasurfaces. A transmission-line approach is used to model the metasurface-tuned seam and analytically retrieve the corresponding surface impedance, from which the unit-cell design is then tailored. Full-wave simulations and microwave antenna measurements performed on a proof-of-concept prototype validate the undesired scattering suppression effect in the case of normally and obliquely incident transverse electric and transverse magnetic wave illuminations. Robustness of the proposed solution to fabrication tolerances is also reported. The study presents metasurface-tuning as an easily implementable, frequency adjustable, and polarization insensitive solution to reduce the scattering of dielectric mechanical seams and improve the overall transparency performance of radome structures.


Author(s):  
Ladislaus Bányai

We derive the thermal noise spectrum of the of the longitudinal and transverse electric field operator of a given wave vector starting from the quantum-statistical definitions and relate it to the complex frequency and wave vector dependent complex conductivity in a homogeneous, isotropic system of electromagnetic interacting electrons. No additional assumptions were used in the proof. We analyze separately the longitudinal and transverse case with their peculiarities. The Nyquist formula for vanishing frequency and wave vector, as well as its modification for non-vanishing frequencies and wave vectors follow immediately. Furthermore we discuss also the noise of the photon occupation numbers.


Author(s):  
Jiaman Hong ◽  
Bo Wang ◽  
Xiaoqing Zhu ◽  
Zhichao Xiong ◽  
Yusen Huang ◽  
...  

In this paper, a novel embedded reflective grating (ERG) is presented to realize bi-function polarization operating at infrared band by finite element analysis (FEM). For transverse electric (TE) polarization, a two-port output (0th and −2nd orders) with an efficiency of more than 47% and excellent uniformity can be obtained. For transverse magnetic (TM) polarization, a high efficiency output of 94.72% can be achieved at the −2th order. The results of the analysis of the electric field intensity distribution, angular and wavelength bandwidths further demonstrate the advantages of the proposed grating. In addition, the tolerance analysis of period and duty cycle prove the feasibility of the grating in practical production.


Biosensors ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 523
Author(s):  
Chu-Tung Yeh ◽  
Devesh Barshilia ◽  
Chia-Jui Hsieh ◽  
Hsun-Yuan Li ◽  
Wen-Hsin Hsieh ◽  
...  

The rapid and sensitive detection of human C-reactive protein (CRP) in a point-of-care (POC) may be conducive to the early diagnosis of various diseases. Biosensors have emerged as a new technology for rapid and accurate detection of CRP for POC applications. Here, we propose a rapid and highly stable guided-mode resonance (GMR) optofluidic biosensing system based on intensity detection with self-compensation, which substantially reduces the instability caused by environmental factors for a long detection time. In addition, a low-cost LED serving as the light source and a photodetector are used for intensity detection and real-time biosensing, and the system compactness facilitates POC applications. Self-compensation relies on a polarizing beam splitter to separate the transverse-magnetic-polarized light and transverse-electric-polarized light from the light source. The transverse-electric-polarized light is used as a background signal for compensating noise, while the transverse-magnetic-polarized light is used as the light source for the GMR biosensor. After compensation, noise is drastically reduced, and both the stability and performance of the system are enhanced over a long period. Refractive index experiments revealed a resolution improvement by 181% when using the proposed system with compensation. In addition, the system was successfully applied to CRP detection, and an outstanding limit of detection of 1.95 × 10−8 g/mL was achieved, validating the proposed measurement system for biochemical reaction detection. The proposed GMR biosensing sensing system can provide a low-cost, compact, rapid, sensitive, and highly stable solution for a variety of point-of-care applications.


2021 ◽  
Author(s):  
Amin Bagheri ◽  
Fakhrodin Nazari ◽  
Mohammad Kazem Moravvej-Farshi

Abstract Using bus waveguides coupled to the graphene-loaded Si-ring resonators (GSRRs) all on a Si-‎on-insulator substrate, we propose a compact bidirectional switchable beam splitter/filter ‎controlled by graphene-based electro-absorptive (refractive) mode modulation. The proposed ‎device consists of a through waveguide coupled to two drop waveguides via two GSRRs. ‎Each GSRR consists of a stack of hBN/graphene/hBN nanolayers sandwiched between two ‎Si-ring resonators. Using a finite difference time domain method, we show that the resonant ‎wavelength of GSRRs can be tuned in the range of 1551.5 < λ <1552.1 nm, linearly with the ‎slope of ~2.46 nm/eV via appropriately changing the graphene chemical potential, ‎electrostatically. The numerical results show that when both GSRRs are in an electro-refractive ‎state and a transverse electric (TE) polarized light beam of an appropriate wavelength is ‎launched into one of the though-ports, ~ 84.5% of the input intensity equally splits between ‎the adjacent drop-ports. The transmission out of the second through-port is less than 0.8%. ‎The numerical results further show that when one GSRR is in an electro-refractive mode, and ‎the other one is in an electro-absorptive state, ~68.4% of the input intensity transmits out of ‎the drop-port adjacent to the former GSRR, and the other ports experience insignificant ‎outputs (<0.7%). The device's structural symmetry makes it a bidirectional tunable, suitable for ‎long-haul optical telecommunication applications.‎


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Prasanna Kumaar S. ◽  
Sivasubramanian A.

Diabetes mellitus is a chronic metabolic condition that affects millions of people worldwide. The present paper investigates the bulk sensitivity of silicon and silicon nitride strip waveguides in the transverse electric (TE) mode. At 1550 nm wavelength, silicon on insulator (SOI) and silicon nitride (Si3N4) are two distinct waveguides of the same geometry structure that can react to refractive changes around the waveguide surface. This article examines the response of two silicon-based waveguide structures to the refractive index of urine samples (human renal fluids) to diagnose diabetes mellitus. An asymmetric Mach–Zehnder interferometer has waveguide sensing and a reference arm with a device that operates in the transverse electric (TE) mode. 3D FDTD simulated waveguide width 800 nm, thickness 220 nm, and analyte thickness 130 nm give the bulk sensitivity of 1.09 (RIU/RIU) and 1.04 (RIU/RIU) for silicon and silicon nitride, respectively, high compared to the regular transverse magnetic (TM) mode strip waveguides. Furthermore, the proposed design gives simple fabrication, contrasting sharply with the state-of-the-art 220 nm wafer technology.


Author(s):  
Cuihong Yang ◽  
J. Y. Zhang ◽  
R. Wieser ◽  
Wen Xu

Abstract We consider the transverse electric (TE) plasmonic modes supported by black phosphorene (BP) in a parallel waveguide structure with left-handed material (LHM) instead of the conventional right-handed dielectric material. The existence condition of the TE BP surface plasmon polariton (SPP) is $\mathrm{Im}\sigma>0$. When an electric field is polarized along one of the two orthogonal crystal axes, the anisotropic symmetric and anti-symmetric plasmonic modes depend on the incident optical energy, the chemical potential, and the distance between two BP sheets can be observed. The symmetric mode has a more extensive effective refractive index, which possesses stronger field confinement. With a decreasing distance $d$ between two BP sheets, the coupling strength between the two separate BPSPP waves increases. When $d$ is small enough, the anti-symmetric mode root does not exist. LHMs can be used to realize a TE BPSPP mode to enhance the localization of the BPSPP, which is a practical method in optoelectronic devices based on black phosphorene.


2021 ◽  
Vol 11 (21) ◽  
pp. 10147
Author(s):  
Mousa Bahrami ◽  
Panagiotis Vasilopoulos

We study the influence of impurity scattering on transverse magnetic (TM) and transverse electric (TE) surface plasmons (SPs) in graphene using the Lindhard approximation. We show how the behaviour and domains of TM SPs are affected by the impurity strength γ and determine the critical value γc below which no SPs exist. The quality factor of TM SPs, for single-band and two-band transitions, is proportional to the square of αλSP/γ, with α being the fine-structure constant and λSP being the plasmon wavelength. In addition, we show that impurity scattering suppresses TE SPs.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Evgeni A. Bezus ◽  
Dmitry A. Bykov ◽  
Leonid L. Doskolovich

Abstract We propose and theoretically and numerically investigate integrated diffraction gratings for the Bloch surface wave (BSW) platform, which have subwavelength or near-subwavelength period. We demonstrate that, in the oblique incidence geometry of a transverse-electric polarized BSW and with a properly chosen band gap configuration of the photonic crystal supporting the surface waves, the proposed structures operate in the scattering-free regime, when the energy of the incident BSW is divided between the reflected and transmitted BSWs with the same polarization corresponding to the propagating diffraction orders of the grating, and not scattered away from the propagation surface. In this regime, the studied integrated gratings support high-Q resonances and bound states in the continuum not only in the subwavelength case when only the specular (zeroth) diffraction orders propagate, but also in the case when non-evanescent zeroth and −1st diffraction orders satisfy the so-called Littrow mounting condition. The proposed integrated gratings on the BSW platform can be used as efficient narrowband spatial or spectral filters operating in reflection, or as BSW beam splitters or deflectors operating in transmission. The obtained results may find application in two-dimensional photonic circuits for steering the BSW propagation.


Sign in / Sign up

Export Citation Format

Share Document