transverse electric fields
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 8)

H-INDEX

16
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Muhammad Ramzan ◽  
Saima Riasat ◽  
Hammad Alotaibi

Abstract This study discusses the entropy generation analysis of electro-magneto hydrodynamics (EMHD) hybrid nanofluid copper oxide-aluminum oxide/ethylene glycol (CuO-Al2O3/C2H6O2) flow amidst two rotating disks in a porous media having variable thermophysical features. The addition of the surface catalyzed to the homogeneous-heterogeneous reactions shorten the reaction time that may be taken as a novel aspect of the undertaken EMHD hybrid nanofluid squeezing flow. The inimitability of the assumed model is supplemented by considering the simultaneous effects of the variable thermal conductivity and viscosity. To simplify the governing flow model, suitable conversions are used to accurately translate the obtained partial differential equations to ordinary differential equations. The flow and energy transfer characteristics are computed and sketched graphically by using the Keller box scheme. The outcomes reveal that the drag force in radial and tangential directions depict the opposing trend for variable viscosity parameter. Furthermore, the normal magnetic and transverse electric fields play an essential role in the alignment of the nanoparticles throughout the flow field. The validation of the envisaged model is also a part of this study.


2021 ◽  
Author(s):  
Igor Timofeev ◽  
Vladimir Annenkov ◽  
Evgeniia Volchok ◽  
Vladimir Glinskiy

Abstract The paper presents the results of numerical simulations of the collective relaxation of an electron beam in a magnetized plasma at the parameters typical to experiments on the ignition of a beam-plasma discharge in the Gas Dynamic Trap. The goal of these simulations is to confirm the ideas about the mechanism of the discharge development, which are used to interpret the results of recent laboratory experiments [Soldatkina et al 2021 {\it Nucl. Fusion}]. In particular, a characteristic feature of these experiments is the localization of the beam relaxation region in the vicinity of the entrance mirror. A strong mirror magnetic field compresses the beam so that its transverse size becomes less than the wavelength it excites. In addition, near the mirror, the electron cyclotron frequency is much higher than the plasma one, which can significantly affect the possibility of propagation of the most unstable waves outside the beam. Particle-in-cell simulations make it possible not only to find how efficiently intense plasma oscillations penetrate the rarefied periphery, but also to prove that the turbulent zone in a realistic nonuniform plasma has regions dominated by transverse electric fields. This creates the necessary conditions for efficient acceleration of the trapped particles to energies much higher than the initial beam energy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie Zhang ◽  
Eric P. Fahrenthold

AbstractThe spin current transmission properties of narrow zigzag graphene nanoribbons (zGNRs) have been the focus of much computational research, investigating the potential application of zGNRs in spintronic devices. Doping, fuctionalization, edge modification, and external electric fields have been studied as methods for spin current control, and the performance of zGNRs initialized in both ferromagnetic and antiferromagnetic spin states has been modeled. Recent work has shown that precise fabrication of narrow zGNRs is possible, and has addressed long debated questions on their magnetic order and stability. This work has revived interest in the application of antiferromagnetic zGNR configurations in spintronics. A general ab initio analysis of narrow antiferromagnetic zGNR performance under a combination of bias voltage and transverse electric field loading shows that their current transmission characteristics differ sharply from those of their ferromagnetic counterparts. At relatively modest field strengths, both majority and minority spin currents react strongly to the applied field. Analysis of band gaps and current transmission pathways explains the presence of negative differential resistance effects and the development of spatially periodic electron transport structures in these nanoribbons.


2021 ◽  
Vol 66 (5) ◽  
pp. 412
Author(s):  
A.S. Vdovych

A modified proton ordering model of glycinium phosphite ferroelectric, which involves the piezoelectric coupling of the proton and lattice subsystems, is used for the investigation of the electrocaloric effect. The model also accounts for the dependence of the effective dipole moment on a hydrogen bond on an order parameter, as well as a splitting of parameters of the interaction between pseudospins in the presence of shear stresses. In the two-particle cluster approximation, the influence of longitudinal and transverse electric fields on components of the polarization vector and the dielectric permittivity tensor, as well as on thermal characteristics of the crystal, is calculated. Longitudinal and transverse electrocaloric effects are studied. The calculated electrocaloric temperature change is quite small, about 1K; however, it can change its sign under the influence of a transverse field.


2019 ◽  
Vol 383 (33) ◽  
pp. 125984 ◽  
Author(s):  
Xiaoling Lü ◽  
Jimin Huang ◽  
Shuhui Lv ◽  
Wenyue Dong ◽  
Yanwei Li ◽  
...  

2017 ◽  
Vol 114 (13) ◽  
pp. 3364-3369 ◽  
Author(s):  
Kyounghwan Kim ◽  
Ashley DaSilva ◽  
Shengqiang Huang ◽  
Babak Fallahazad ◽  
Stefano Larentis ◽  
...  

According to electronic structure theory, bilayer graphene is expected to have anomalous electronic properties when it has long-period moiré patterns produced by small misalignments between its individual layer honeycomb lattices. We have realized bilayer graphene moiré crystals with accurately controlled twist angles smaller than 1° and studied their properties using scanning probe microscopy and electron transport. We observe conductivity minima at charge neutrality, satellite gaps that appear at anomalous carrier densities for twist angles smaller than 1°, and tunneling densities-of-states that are strongly dependent on carrier density. These features are robust up to large transverse electric fields. In perpendicular magnetic fields, we observe the emergence of a Hofstadter butterfly in the energy spectrum, with fourfold degenerate Landau levels, and broken symmetry quantum Hall states at filling factors ±1, 2, 3. These observations demonstrate that at small twist angles, the electronic properties of bilayer graphene moiré crystals are strongly altered by electron–electron interactions.


Sign in / Sign up

Export Citation Format

Share Document