scholarly journals On a revisited Moore-Penrose inverse of a linear operator on Hilbert spaces

Filomat ◽  
2017 ◽  
Vol 31 (7) ◽  
pp. 1927-1931
Author(s):  
Saroj Malik ◽  
Néstor Thome

For two given Hilbert spaces H and K and a given bounded linear operator A ? L(H,K) having closed range, it is well known that the Moore-Penrose inverse of A is a reflexive g-inverse G ? L(K,H) of A which is both minimum norm and least squares. In this paper, weaker equivalent conditions for an operator G to be the Moore-Penrose inverse of A are investigated in terms of normal, EP, bi-normal, bi-EP, l-quasi-normal and r-quasi-normal and l-quasi-EP and r-quasi-EP operators.

Author(s):  
J. Sedghi Moghaddam ◽  
A. Najati ◽  
F. Ghobadzadeh

The concept of [Formula: see text]-frames was recently introduced by Găvruta7 in Hilbert spaces to study atomic systems with respect to a bounded linear operator. Let [Formula: see text] be a unital [Formula: see text]-algebra, [Formula: see text] be finitely or countably generated Hilbert [Formula: see text]-modules, and [Formula: see text] be adjointable operators from [Formula: see text] to [Formula: see text]. In this paper, we study a class of [Formula: see text]-bounded operators and [Formula: see text]-operator frames for [Formula: see text]. We also prove that the pseudo-inverse of [Formula: see text] exists if and only if [Formula: see text] has closed range. We extend some known results about the pseudo-inverses acting on Hilbert spaces in the context of Hilbert [Formula: see text]-modules. Further, we also present some perturbation results for [Formula: see text]-operator frames in [Formula: see text].


2007 ◽  
Vol 49 (1) ◽  
pp. 145-154
Author(s):  
BRUCE A. BARNES

Abstract.LetTbe a bounded linear operator on a Banach spaceW, assumeWandYare in normed duality, and assume thatThas adjointT†relative toY. In this paper, conditions are given that imply that for all λ≠0, λ−Tand λ −T†maintain important standard operator relationships. For example, under the conditions given, λ −Thas closed range if, and only if, λ −T†has closed range.These general results are shown to apply to certain classes of integral operators acting on spaces of continuous functions.


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Zhong-Qi Xiang

We obtain a new inequality for frames in Hilbert spaces associated with a scalar and a bounded linear operator induced by two Bessel sequences. It turns out that the corresponding results due to Balan et al. and Găvruţa can be deduced from our result.


1979 ◽  
Vol 20 (2) ◽  
pp. 163-168 ◽  
Author(s):  
Che-Kao Fong

A (bounded, linear) operator H on a Banach space is said to be hermitian if ∥exp(itH)∥ = 1 for all real t. An operator N on is said to be normal if N = H + iK, where H and K are commuting hermitian operators. These definitions generalize those familiar concepts of operators on Hilbert spaces. Also, the normal derivations defined in [1] are normal operators. For more details about hermitian operators and normal operators on general Banach spaces, see [4]. The main result concerning normal operators in the present paper is the following theorem.


2006 ◽  
Vol 73 (2) ◽  
pp. 255-262 ◽  
Author(s):  
S. S. Dragomir

Some elementary inequalities providing upper bounds for the difference of the norm and the numerical radius of a bounded linear operator on Hilbert spaces under appropriate conditions are given.


Author(s):  
Vahid Sadri ◽  
Reza Ahmadi ◽  
Gholamreza Rahimlou

In this paper, we first introduce the notation of weaving continuous fusion frames in separable Hilbert spaces. After reviewing the conditions for maintaining the weaving [Formula: see text]-fusion frames under the bounded linear operator and also, removing vectors from these frames, we will present a necessarily and sufficient condition about [Formula: see text]-woven and [Formula: see text]-fusion woven. Finally, perturbation of these frames will be introduced.


2014 ◽  
Vol 46 (1) ◽  
pp. 85-90 ◽  
Author(s):  
P.Sam Johnson ◽  
G. Ramu

$K$-frames, more general than the ordinary frames, have been introduced by Laura G{\u{a}}vru{\c{t}}a in Hilbert spaces to study atomic systems with respect to a bounded linear operator. Using the frame operator, we find a class of bounded linear operators in which a given Bessel sequence is an atomic system for every member in the class.


Filomat ◽  
2018 ◽  
Vol 32 (17) ◽  
pp. 6131-6144
Author(s):  
Fapeng Du ◽  
Zuhair Nashed

In this paper, we present some characteristics and expressions of the core inverse A# of bounded linear operator A in Hilbert spaces. Additive perturbations of core inverse are investigated under the condition R( ?)?N(A#) = {0} and an upper bound of ||?#-A#|| is obtained. We also discuss the multiplicative perturbations. The expressions of core inverse of perturbed operator T = EAF and the upper bounds of ||T#-A#|| are obtained too.


1974 ◽  
Vol 17 (2) ◽  
pp. 275-276 ◽  
Author(s):  
C. W. Groetsch

Let T be a bounded linear operator defined on a Hilbert space H. An element z∈H is called a least squares solution of the equationif . It is easily shown that z is a least squares solution of (1) if and only if z satisfies the normal equation


Sign in / Sign up

Export Citation Format

Share Document