An uncertainty principle for the basic wavelet transform

Author(s):  
Javid Ahmad Ganie ◽  
Renu Jain

The aim of this paper is to derive the uncertainty principle which has implications in signal analysis and in quantum mechanics. First, we derive the definition of the wavelet transform in [Formula: see text]-calculus by using some weight function. Certain properties like linearity, scaling, translation, etc. were discussed. Later on, to illustrate this integral transform several results were derived for the effectiveness and performance of the proposed method. Also, this paper surveys recent applications to establish generalized uncertainty principle.

2005 ◽  
Vol 03 (04) ◽  
pp. 623-632 ◽  
Author(s):  
KOUROSH NOZARI ◽  
TAHEREH AZIZI

In this paper, dynamics and quantum mechanical coherent states of a simple harmonic oscillator are considered in the framework of the Generalized Uncertainty Principle (GUP). Equations of motion for the simple harmonic oscillator are derived and some of their new implications are discussed. Then, coherent states of the harmonic oscillator in the case of the GUP are compared with the relative situation in ordinary quantum mechanics. It is shown that in the framework of GUP there is no considerable difference in definition of coherent states relative to ordinary quantum mechanics. But, considering expectation values and variances of some operators, based on quantum gravitational arguments, one concludes that although it is possible to have complete coherency and vanishing broadening in usual quantum mechanics, gravitational induced uncertainty destroys complete coherency in quantum gravity and it is not possible to have a monochromatic ray in principle.


2010 ◽  
Vol 19 (12) ◽  
pp. 2003-2009 ◽  
Author(s):  
POURIA PEDRAM

Various candidates of quantum gravity such as string theory, loop quantum gravity and black hole physics all predict the existence of a minimum observable length which modifies the Heisenberg uncertainty principle to the so-called generalized uncertainty principle (GUP). This approach results from the modification of the commutation relations and changes all Hamiltonians in quantum mechanics. In this paper, we present a class of physically acceptable solutions for a general commutation relation without directly solving the corresponding generalized Schrödinger equations. These solutions satisfy the boundary conditions and exhibit the effect of the deformed algebra on the energy spectrum. We show that this procedure prevents us from doing equivalent but lengthy calculations.


2019 ◽  
Vol 34 (33) ◽  
pp. 1950267
Author(s):  
Won Sang Chung

In this paper, we present a new D-dimensional generalized uncertainty principle (GUP) algebra with commuting coordinates which recovers [Formula: see text] in one dimension. We find two representations for this GUP: momentum representation and position representation. We discuss the GUP-corrected three-dimensional quantum mechanics in position representation for a small [Formula: see text]. Finally, we discuss the momentum wave function and GUP-corrected Fermi metal theory.


Sign in / Sign up

Export Citation Format

Share Document