ALIGNING MULTIPLE PROTEIN STRUCTURES BY DETERMINISTIC ANNEALING

2005 ◽  
Vol 03 (04) ◽  
pp. 837-860 ◽  
Author(s):  
TIANSHOU ZHOU ◽  
LUONAN CHEN ◽  
YUN TANG ◽  
XIANGSUN ZHANG

Protein structure alignment plays a key role in protein structure prediction and fold family classification. An efficient method for multiple protein structure alignment in a mathematical manner is presented, based on deterministic annealing technique. The alignment problem is mapped onto a nonlinear continuous optimization problem (NCOP) with common consensus chain, matching assignment matrices and atomic coordinates as variables. At each step in the annealing procedure, the NCOP is decomposed into as many subproblems as the number of protein chains, each of which is actually an independent pairwise structure alignment between a protein chain and the consensus chain and hence can be efficiently solved by the parallel computation technique. The proposed method is robust with respect to choice of iteration parameters for a wide range of proteins, and performs well in both multiple and pairwise structure alignment cases, compared with existing alignment methods.

2004 ◽  
Vol 02 (01) ◽  
pp. 215-239 ◽  
Author(s):  
TOLGA CAN ◽  
YUAN-FANG WANG

We present a new method for conducting protein structure similarity searches, which improves on the efficiency of some existing techniques. Our method is grounded in the theory of differential geometry on 3D space curve matching. We generate shape signatures for proteins that are invariant, localized, robust, compact, and biologically meaningful. The invariancy of the shape signatures allows us to improve similarity searching efficiency by adopting a hierarchical coarse-to-fine strategy. We index the shape signatures using an efficient hashing-based technique. With the help of this technique we screen out unlikely candidates and perform detailed pairwise alignments only for a small number of candidates that survive the screening process. Contrary to other hashing based techniques, our technique employs domain specific information (not just geometric information) in constructing the hash key, and hence, is more tuned to the domain of biology. Furthermore, the invariancy, localization, and compactness of the shape signatures allow us to utilize a well-known local sequence alignment algorithm for aligning two protein structures. One measure of the efficacy of the proposed technique is that we were able to perform structure alignment queries 36 times faster (on the average) than a well-known method while keeping the quality of the query results at an approximately similar level.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Che-Lun Hung ◽  
Yaw-Ling Lin

Protein structure alignment has become an important strategy by which to identify evolutionary relationships between protein sequences. Several alignment tools are currently available for online comparison of protein structures. In this paper, we propose a parallel protein structure alignment service based on the Hadoop distribution framework. This service includes a protein structure alignment algorithm, a refinement algorithm, and a MapReduce programming model. The refinement algorithm refines the result of alignment. To process vast numbers of protein structures in parallel, the alignment and refinement algorithms are implemented using MapReduce. We analyzed and compared the structure alignments produced by different methods using a dataset randomly selected from the PDB database. The experimental results verify that the proposed algorithm refines the resulting alignments more accurately than existing algorithms. Meanwhile, the computational performance of the proposed service is proportional to the number of processors used in our cloud platform.


2000 ◽  
Vol 33 (1) ◽  
pp. 176-183 ◽  
Author(s):  
Guoguang Lu

In order to facilitate the three-dimensional structure comparison of proteins, software for making comparisons and searching for similarities to protein structures in databases has been developed. The program identifies the residues that share similar positions of both main-chain and side-chain atoms between two proteins. The unique functions of the software also include database processingviaInternet- and Web-based servers for different types of users. The developed method and its friendly user interface copes with many of the problems that frequently occur in protein structure comparisons, such as detecting structurally equivalent residues, misalignment caused by coincident match of Cαatoms, circular sequence permutations, tedious repetition of access, maintenance of the most recent database, and inconvenience of user interface. The program is also designed to cooperate with other tools in structural bioinformatics, such as the 3DB Browser software [Prilusky (1998).Protein Data Bank Q. Newslett.84, 3–4] and the SCOP database [Murzin, Brenner, Hubbard & Chothia (1995).J. Mol. Biol.247, 536–540], for convenient molecular modelling and protein structure analysis. A similarity ranking score of `structure diversity' is proposed in order to estimate the evolutionary distance between proteins based on the comparisons of their three-dimensional structures. The function of the program has been utilized as a part of an automated program for multiple protein structure alignment. In this paper, the algorithm of the program and results of systematic tests are presented and discussed.


Author(s):  
Tatsuya Akutsu

This chapter provides an overview of computational problems and techniques for protein threading. Protein threading is one of the most powerful approaches to protein structure prediction, where protein structure prediction is to infer three-dimensional (3-D) protein structure for a given protein sequence. Protein threading can be modeled as an optimization problem. Optimal solutions can be obtained in polynomial time using simple dynamic programming algorithms if profile type score functions are employed. However, this problem is computationally hard (NP-hard) if score functions include pairwise interaction preferences between amino acid residues. Therefore, various algorithms have been developed for finding optimal or near-optimal solutions. This chapter explains the ideas employed in these algorithms. This chapter also gives brief explanations of related problems: protein threading with constraints, comparison of RNA secondary structures and protein structure alignment.


Sign in / Sign up

Export Citation Format

Share Document