frequency processing
Recently Published Documents


TOTAL DOCUMENTS

224
(FIVE YEARS 26)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Vol 5 (11 (113)) ◽  
pp. 51-60
Author(s):  
Aigul Omaraliyeva ◽  
Zhanar Botbayeva ◽  
Mereke Agedilova ◽  
Meruyert Abilova ◽  
Aidana Zhanaidarova

This paper describes the materials and results of studying the properties of such a leguminous crop as the chickpea variety Miras 07 of Kazakhstan selection in order to obtain gluten-free flour and further process it to produce confectionery products. The research involved the ultra-high-frequency (UHF) treatment of chickpea grain to improve quality indicators and reduce anti-alimentary factors. A change in the protein fraction of chickpeas was determined under exposure to ultra-high-frequency processing. The study has proven the effectiveness of ultra-high-frequency treatment of chickpea for 180 seconds. Based on chemical analysis, it was found that the exposure to ultra-high-frequency treatment fully preserved the vitamin and mineral complex, compared with untreated chickpeas. When chickpea grain is heated for 180 seconds, up to 20 % of the starch contained in the grain passes into dextrin, which is easily absorbed by humans while the toxic substances are destroyed. The change in the protein fraction of chickpeas during ultra-high-frequency processing was determined. With ultra-high-frequency treatment of chickpea flour at 180 seconds of exposure, the protein fraction content remains unchanged at 79.8 %. The result based on the IR spectrum data indicates that ultra-high-frequency processing did not affect the protein-amino acid composition of the examined Miras 07 chickpea variety. The current study has confirmed the effectiveness of ultra-high-frequency chickpea treatment, which leads to the intensification of biochemical processes in the processed product due to the resonant absorption of energy by protein molecules and polysaccharides. Under the influence of ultra-high-frequency treatment, there is a decrease in the microbiological contamination of raw materials while the organoleptic indicators improve. According to the microbiological indicators of chickpea flour, the content of microorganisms was 1×103 CFU/g, which meets the requirements for sanitary and hygienic safety


2021 ◽  
Vol 15 ◽  
Author(s):  
Raul Sanchez-Lopez ◽  
Silje Grini Nielsen ◽  
Mouhamad El-Haj-Ali ◽  
Federica Bianchi ◽  
Michal Fereczkowski ◽  
...  

The Better hEAring Rehabilitation (BEAR) project aims to provide a new clinical profiling tool—a test battery—for hearing loss characterization. Although the loss of sensitivity can be efficiently measured using pure-tone audiometry, the assessment of supra-threshold hearing deficits remains a challenge. In contrast to the classical “attenuation-distortion” model, the proposed BEAR approach is based on the hypothesis that the hearing abilities of a given listener can be characterized along two dimensions, reflecting independent types of perceptual deficits (distortions). A data-driven approach provided evidence for the existence of different auditory profiles with different degrees of distortions. Ten tests were included in a test battery, based on their clinical feasibility, time efficiency, and related evidence from the literature. The tests were divided into six categories: audibility, speech perception, binaural processing abilities, loudness perception, spectro-temporal modulation sensitivity, and spectro-temporal resolution. Seventy-five listeners with symmetric, mild-to-severe sensorineural hearing loss were selected from a clinical population. The analysis of the results showed interrelations among outcomes related to high-frequency processing and outcome measures related to low-frequency processing abilities. The results showed the ability of the tests to reveal differences among individuals and their potential use in clinical settings.


2021 ◽  
Author(s):  
Anthony James Mannucci ◽  
Chi On Ao ◽  
Byron A. Iijima ◽  
Thomas K. Meehan ◽  
Panagiotis Vergados ◽  
...  

Abstract. We have performed an analysis of reprocessed GPS/MET data spanning 1995–1997 generated by CDAAC in 2007. CDAAC developed modified dual-frequency processing methods for the encrypted data (AS-on) during 1995–1997. We compared the CDAAC data set to the MERRA-2 reanalysis, separately for AS-on and AS-off, focusing on the altitude range 10–30 km. MERRA-2 did not assimilate GPS/MET data in the period 1995–1997. To gain insight into the CDAAC data set, we developed a single-frequency data set for GPS/MET, which is unaffected by the presence of encryption. We find excellent agreement between the more limited single frequency data set and the CDAAC data set: the bias between these two data sets is consistently less than 0.25 % in refractivity, whether or not AS is on. Given the different techniques applied between the CDAAC and JPL data sets, agreement suggests that the CDAAC AS-on processing and the single frequency processing are not biased in an aggregate sense greater than 0.25 % in refractivity, which corresponds approximately to a temperature bias less than 0.5 K. Since the profiles contained in the new single frequency data set are not a subset of the CDAAC profiles, the combination of the CDAAC data set, consisting of 9,579 profiles, and the new single-frequency data set, consisting of 4,729 profiles, yields a total number of 11,531 unique profiles from combining the JPL and CDAAC data sets. All numbers are after quality control has been applied by the respective processing activities.


2021 ◽  
Vol 15 ◽  
Author(s):  
Katja Saldeitis ◽  
Marcus Jeschke ◽  
Eike Budinger ◽  
Frank W. Ohl ◽  
Max F. K. Happel

Corticofugal projections outnumber subcortical input projections by far. However, the specific role for signal processing of corticofugal feedback is still less well understood in comparisonto the feedforward projection. Here, we lesioned corticothalamic (CT) neurons in layers V and/or VI of the auditory cortex of Mongolian gerbils by laser-induced photolysis to investigate their contribution to cortical activation patterns. We have used laminar current-source density (CSD) recordings of tone-evoked responses and could show that, particularly, lesion of CT neurons in layer VI affected cortical frequency processing. Specifically, we found a decreased gain of best-frequency input in thalamocortical (TC)-recipient input layers that correlated with the relative lesion of layer VI neurons, but not layer V neurons. Using cortical silencing with the GABAa-agonist muscimol and layer-specific intracortical microstimulation (ICMS), we found that direct activation of infragranular layers recruited a local recurrent cortico-thalamo-cortical loop of synaptic input. This recurrent feedback was also only interrupted when lesioning layer VI neurons, but not cells in layer V. Our study thereby shows distinct roles of these two types of CT neurons suggesting a particular impact of CT feedback from layer VI to affect the local feedforward frequency processing in auditory cortex.


LWT ◽  
2021 ◽  
Vol 147 ◽  
pp. 111563
Author(s):  
Irem Saka ◽  
Huseyin Topcam ◽  
Ezgi Son ◽  
Berrin Ozkaya ◽  
Ferruh Erdogdu

2021 ◽  
Vol 125 (2) ◽  
pp. 687-692
Author(s):  
Kevin K. W. Ng ◽  
Ian N. Snow ◽  
Ingvars Birznieks ◽  
Richard M. Vickery

We present evidence for a generalized frequency processing strategy on tactile afferent inputs that is shared across a broad range of frequencies extending beyond the flutter range, supporting the notion that spike timing has an important role in shaping tactile perception.


2021 ◽  
Vol 19 (4) ◽  
pp. 138-147
Author(s):  
A. V. Ponomarev ◽  
O. V. Ponomareva

In the field of Fourier processing of finite signals, three main directions of scientific research have been identified: Fourier processing of one-dimensional finite signals - processing of scalar functions of a scalar argument, Fourier processing of two-dimensional finite signals - processing of scalar functions of a vector argument, multichannel Fourier processing - processing of vector functions of a scalar argument. As part of the creation of a generalized theory of Fourier processing of finite signals, the authors proposed: the theory of spectral analysis of discrete signals at finite intervals in the bases of parametric exponential functions and the theory of two-dimensional digital signal processing in Fourier bases with variable parameters. The developed theories, generalizing the theory of Fourier processing of one-dimensional and two-dimensional signals, are based: on the introduction of new concepts of the shift of finite discrete signals in one-dimensional and two-dimensional cases and the introduction of new basic Fourier processing systems of discrete signals, which have the properties of multiplicativity, functions in the system. The mathematical apparatus of two-dimensional discrete Fourier transform with variable parameters in matrix and algebraic form is considered. A new method for processing finite two-dimensional real discrete signals in the spatial-frequency domain based on the discrete Fourier transform with variable parameters, the method of sliding spatial-frequency processing, has been introduced. An efficient method and algorithm for fast diagonal sliding spatial-frequency processing of finite two-dimensional real discrete signals based on the discrete Fourier transform with variable parameters has been developed. The estimation of the efficiency and effectiveness of the algorithm of the diagonal sliding two-dimensional discrete Fourier transform with variable parameters from the point of view of computational costs is carried out. As a result of experimental studies on model two-dimensional discrete finite signals, the validity, efficiency and reliability of the proposed method of sliding spatial-frequency processing of finite two-dimensional real discrete signals based on the discrete Fourier transform with variable parameters have been proved. A comparison (from the point of view of computational costs) of the developed method of sliding spatial-frequency processing of finite two-dimensional real discrete signals based on the discrete Fourier transform with variable parameters with the standard method of sliding processing of this type of signals is carried out.


Sign in / Sign up

Export Citation Format

Share Document