Unsupervised multi-instance learning for protein structure determination

2021 ◽  
Vol 19 (01) ◽  
pp. 2140002
Author(s):  
Fardina Fathmiul Alam ◽  
Amarda Shehu

Many regions of the protein universe remain inaccessible by wet-laboratory or computational structure determination methods. A significant challenge in elucidating these dark regions in silico relates to the ability to discriminate relevant structure(s) among many structures/decoys computed for a protein of interest, a problem known as decoy selection. Clustering decoys based on geometric similarity remains popular. However, it is unclear how exactly to exploit the groups of decoys revealed via clustering to select individual structures for prediction. In this paper, we provide an intuitive formulation of the decoy selection problem as an instance of unsupervised multi-instance learning. We address the problem in three stages, first organizing given decoys of a protein molecule into bags, then identifying relevant bags, and finally drawing individual instances from these bags to offer as prediction. We propose both non-parametric and parametric algorithms for drawing individual instances. Our evaluation utilizes two datasets, one benchmark dataset of ensembles of decoys for a varied list of protein molecules, and a dataset of decoy ensembles for targets drawn from recent CASP competitions. A comparative analysis with state-of-the-art methods reveals that the proposed approach outperforms existing methods, thus warranting further investigation of multi-instance learning to advance our treatment of decoy selection.

2021 ◽  
Vol 11 (Suppl_1) ◽  
pp. S13-S13
Author(s):  
Valery Novoseletsky ◽  
Mikhail Lozhnikov ◽  
Grigoriy Armeev ◽  
Aleksandr Kudriavtsev ◽  
Alexey Shaytan ◽  
...  

Background: Protein structure determination using X-ray free-electron laser (XFEL) includes analysis and merging a large number of snapshot diffraction patterns. Convolutional neural networks are widely used to solve numerous computer vision problems, e.g. image classification, and can be used for diffraction pattern analysis. But the task of protein structure determination with the use of CNNs only is not yet solved. Methods: We simulated the diffraction patterns using the Condor software library and obtained more than 1000 diffraction patterns for each structure with simulation parameters resembling real ones. To classify diffraction patterns, we tried two approaches, which are widely known in the area of image classification: a classic VGG network and residual networks. Results: 1. Recognition of a protein class (GPCRs vs globins). Globins and GPCR-like proteins are typical α-helical proteins. Each of these protein families has a large number of representatives (including those with known structure) but we used only 8 structures from every family. 12,000 of diffraction patterns were used for training and 4,000 patterns for testing. Results indicate that all considered networks are able to recognize the protein family type with high accuracy. 2. Recognition of the number of protein molecules in the liposome. We considered the usage of lyposomes as carriers of membrane or globular proteins for sample delivery in XFEL experiments in order to improve the X-ray beam hit rate. Three sets of diffractograms for liposomes of various radius were calculated, including diffractograms for empty liposomes, liposomes loaded with 5 bacteriorhodopsin molecules, and liposomes loaded with 10 bacteriorhodopsin molecules. The training set consisted of 23625 diffraction patterns, and test set of 7875 patterns. We found that all networks used in our study were able to identify the number of protein molecules in liposomes independent of the liposome radius. Our findings make this approach rather promising for the usage of liposomes as protein carriers in XFEL experiments. Conclusion: Thus, the performed numerical experiments show that the use of neural network algorithms for the recognition of diffraction images from single macromolecular particles makes it possible to determine changes in the structure at the angstrom scale.


Sign in / Sign up

Export Citation Format

Share Document