scholarly journals EXACT QUANTUM FOURIER TRANSFORMS AND DISCRETE LOGARITHM ALGORITHMS

2004 ◽  
Vol 02 (01) ◽  
pp. 91-100 ◽  
Author(s):  
MICHELE MOSCA ◽  
CHRISTOF ZALKA

We show how the Quantum Fast Fourier Transform (QFFT) can be made exact for arbitrary orders (first showing it for large primes). Most quantum algorithms only need a good approximation of the quantum Fourier transform of order 2n to succeed with high probability, and this QFFT can in fact be done exactly. Kitaev1 showed how to approximate the Fourier transform for any order. Here we show how his construction can be made exact by using the technique known as "amplitude amplification". Although unlikely to be of any practical use, this construction allows one to make Shor's discrete logarithm quantum algorithm exact. Thus we have the first example of an exact non black box fast quantum algorithm, thereby giving more evidence that "quantum" need not be probabilistic. We also show that in a certain sense the family of circuits for the exact QFFT is uniform. Namely, the parameters of the gates can be approximated efficiently.

Quantum Fourier transform (QFT) plays a key role in many quantum algorithms, but the existing circuits of QFT are incomplete and lacking the proof of correctness. Furthermore, it is difficult to apply QFT to the concrete field of information processing. Thus, this chapter firstly investigates quantum vision representation (QVR) and develops a model of QVR (MQVR). Then, four complete circuits of QFT and inverse QFT (IQFT) are designed. Meanwhile, this chapter proves the correctness of the four complete circuits using formula derivation. Next, 2D QFT and 3D QFT based on QVR are proposed. Experimental results with simulation show the proposed QFTs are valid and useful in processing quantum images and videos. In conclusion, this chapter develops a complete framework of QFT based on QVR and provides a feasible scheme for QFT to be applied in quantum vision information processing.


Author(s):  
Damian Musk

The quantum Fourier transform (QFT) can calculate the Fourier transform of a vector of size N with time complexity 𝒪(log2N) as compared to the classical complexity of 𝒪(NlogN). However, if one wanted to measure the full output state, then the QFT complexity becomes 𝒪(Nlog2N), thus losing its apparent advantage, indicating that the advantage is fully exploited for algorithms when only a limited number of samples is required from the output vector, as is the case in many quantum algorithms. Moreover, the computational complexity worsens if one considers the complexity of constructing the initial state. In this paper, this issue is better illustrated by providing a concrete implementation of these algorithms and discussing their complexities as well as the complexity of the simulation of the QFT in MATLAB.


2015 ◽  
Vol 13 (07) ◽  
pp. 1550059 ◽  
Author(s):  
Shruti Dogra ◽  
Arvind Dorai ◽  
Kavita Dorai

The quantum Fourier transform (QFT) is a key ingredient of several quantum algorithms and a qudit-specific implementation of the QFT is hence an important step toward the realization of qudit-based quantum computers. This work develops a circuit decomposition of the QFT for hybrid qudits based on generalized Hadamard and generalized controlled-phase gates, which can be implemented using selective rotations in NMR. We experimentally implement the hybrid qudit QFT on an NMR quantum emulator, which uses four qubits to emulate a single qutrit coupled to two qubits.


Author(s):  
M. Younus Bhat ◽  
Aamir H. Dar

The linear canonical transform (LCT) provides a unified treatment of the generalized Fourier transforms in the sense that it is an embodiment of several well-known integral transforms including the Fourier transform, fractional Fourier transform, Fresnel transform. Using this fascinating property of LCT, we, in this paper, constructed associated wavelet packets. First, we construct wavelet packets corresponding to nonuniform Multiresolution analysis (MRA) associated with LCT and then those corresponding to vector-valued nonuniform MRA associated with LCT. We investigate their various properties by means of LCT.


Geophysics ◽  
1985 ◽  
Vol 50 (9) ◽  
pp. 1500-1501
Author(s):  
B. N. P. Agarwal ◽  
D. Sita Ramaiah

Bhimasankaram et al. (1977) used Fourier spectrum analysis for a direct approach to the interpretation of gravity anomaly over a finite inclined dike. They derived several equations from the real and imaginary components and from the amplitude and phase spectra to relate various parameters of the dike. Because the width 2b of the dike (Figure 1) appears only in sin (ωb) term—ω being the angular frequency—they determined its value from the minima/zeroes of the amplitude spectra. The theoretical Fourier spectrum uses gravity field data over an infinite distance (length), whereas field observations are available only for a limited distance. Thus, a set of observational data is viewed as a product of infinite‐distance data with an appropriate window function. Usually, a rectangular window of appropriate distance (width) and of unit magnitude is chosen for this purpose. The Fourier transform of the finite‐distance and discrete data is thus represented by convolution operations between Fourier transforms of the infinite‐distance data, the window function, and the comb function. The combined effect gives a smooth, weighted average spectrum. Thus, the Fourier transform of actual observed data may differ substantially from theoretic data. The differences are apparent for low‐ and high‐frequency ranges. As a result, the minima of the amplitude spectra may change considerably, thereby rendering the estimate of the width of the dike unreliable from the roots of the equation sin (ωb) = 0.


Geophysics ◽  
1977 ◽  
Vol 42 (7) ◽  
pp. 1450-1457 ◽  
Author(s):  
Robert D. Regan ◽  
William J. Hinze

The mathematical structure of the Fourier transformations of theoretical gravity anomalies of several geometrically simple bodies appears to have distinct advantages in the interpretation of these anomalies. However, the practical application of this technique is dependent upon the transformation of an observed gravity anomaly of finite length. Ideally, interpretation methods similar to those for the transformations of the theoretical gravity anomalies should be developed for anomalies of a finite length. However, the mathematical complexity of the convolution integrals in the transform calculations of theoretical anomaly segments indicate that no general closed analytical solution useful for interpretation is available. Thus, in order to utilize the Fourier transform interpretation method, the data must be of sufficient length for the finite transform to closely approximate the theoretical transforms.


Author(s):  
R. J. Elliott

Introduction. Spectral synthesis is the study of whether functions in a certain set, usually a translation invariant subspace (a variety), can be synthesized from certain simple functions, exponential monomials, which are contained in the set. This problem is transformed by considering the annihilator ideal in the dual space, and after taking the Fourier transform the problem becomes one of deciding whether a function is in a certain ideal, that is, we have a ‘division problem’. Because of this we must take into consideration the possibility of the Fourier transforms of functions having zeros of order greater than or equal to 1. This is why, in the original situation, we study whether varieties are generated by their exponential monomials, rather than just their exponential functions. This viewpoint of the problem as a division question, of course, perhaps throws light on why Wiener's Tauberian theorem works, and is implicit in the construction of Schwartz's and Malliavin's counter examples to spectral synthesis in L1(G) (cf. Rudin ((4))).


2006 ◽  
Vol 14 (1) ◽  
pp. 21-40 ◽  
Author(s):  
Paul Massey ◽  
John A. Clark ◽  
Susan Stepney

We show how Genetic Programming (GP) can be used to evolve useful quantum computing artefacts of increasing sophistication and usefulness: firstly specific quantum circuits, then quantum programs, and finally system-independent quantum algorithms. We conclude the paper by presenting a human-competitive Quantum Fourier Transform (QFT) algorithm evolved by GP.


Sign in / Sign up

Export Citation Format

Share Document