QUANTUM SECURE DIRECT COMMUNICATION USING A SIX-QUBIT MAXIMALLY ENTANGLED STATE WITH DENSE CODING

2009 ◽  
Vol 07 (03) ◽  
pp. 645-651 ◽  
Author(s):  
LI DONG ◽  
HAI-KUAN DONG ◽  
XIAO-MING XIU ◽  
YA-JUN GAO ◽  
FENG CHI

Using quantum dense coding, a quantum secure direct communication scheme with a six-qubit maximally entangled state is proposed. If the first security test is passed, the sender performs unitary transformations to encode the secret information on her particles and sends to the receiver. The receiver then performs projective measurements to decode the secret information. It enables the sender to transmit six-bit classical secret message by sending three particles to the receiver. The second security test is adopted to guarantee the security of the communication.

2010 ◽  
Vol 08 (08) ◽  
pp. 1355-1371 ◽  
Author(s):  
CHIN-YUNG LU ◽  
SHIOU-AN WANG ◽  
YUH-JIUH CHENG ◽  
SY-YEN KUO

In this paper, we propose a quantum secure direct communication (QSDC) protocol based on Einstein–Podolsky–Rosen (EPR) pairs. Previous QSDC protocols usually consume one EPR pair to transmit a single qubit. If Alice wants to transmit an n-bit message, she needs at least n/2 EPR pairs when a dense coding scheme is used. In our protocol, if both Alice and Bob preshare 2c + 1 EPR pairs with the trusted server, where c is a constant, Alice can transmit an arbitrary number of qubits to Bob. The 2c EPR pairs are used by Alice and Bob to authenticate each other and the remaining EPR pair is used to encode and decode the message qubit. Thus the total number of EPR pairs used for one communication is a constant no matter how many bits will be transmitted. It is not necessary to transmit EPR pairs before transmitting the secret message except for the preshared constant number of EPR pairs. This reduces both the utilization of the quantum channel and the risk. In addition, after the authentication, the server is not involved in the message transmission. Thus we can prevent the server from knowing the message.


2010 ◽  
Vol 08 (04) ◽  
pp. 697-719 ◽  
Author(s):  
KAI WEN ◽  
GUI LU LONG

In this article, we present unbalanced-quantum-error-correcting codes (one-party QECCs) — a novel idea for correcting unbalanced quantum errors. In some quantum communication tasks using entangled pairs, the error distributions between two parts of the pairs are unbalanced, and one party holds the whole entangled pairs at the final stage, and he or she is able to perform joint measurements on the pairs. In this situation the proposed one-party QECCs can improve error correction by allowing a higher-tolerated error rate. We have established the general correspondence between linear classical codes and the one-party QECCs, and we have given the general definition for these types of quantum-error-correcting codes. It has been shown that the one-party QECCs can correct errors as long as the error threshold is not larger than 0.5. They work even for fidelity less than 0.5 as long as it is larger than 0.25. We give several concrete examples of the one-party QECCs. We provide the applications of the one-party QECCs in quantum dense coding, so that it can function in noisy channels. As a result, a large number of quantum secure direct communication protocols based on dense coding are also able to be protected by this new type of one-party QECCs.


Entropy ◽  
2015 ◽  
Vol 17 (12) ◽  
pp. 6743-6752 ◽  
Author(s):  
Jian Li ◽  
Zeshi Pan ◽  
Fengqi Sun ◽  
Yanhua Chen ◽  
Zheng Wang ◽  
...  

2014 ◽  
Vol 28 (15) ◽  
pp. 1450121 ◽  
Author(s):  
Dongsu Shen ◽  
Wenping Ma ◽  
Meiling Wang ◽  
Xunru Yin

A security loophole exists in Gao et al.'s controlled quantum secure direct communication protocol. By employing the security loophole, the receiver can obtain the secret message sent by the sender without the permission of the controller in their protocol. In order to avoid this loophole, we present an improved protocol in this paper. In the improved protocol, entangled particles are prepared at random in two GHZ-like states, which ensure that the receiver is not able to recover the secret message without knowing the initially entangled state. Compared with the other improved version whose security depends on the perfect quantum channel, our improved protocol is secure in a noisy quantum channel. Therefore, our protocol is more practical.


2012 ◽  
Vol 67 (6-7) ◽  
pp. 369-376 ◽  
Author(s):  
Jian Li ◽  
Jin-Rui Nie ◽  
Rui-Fan Li ◽  
Bo Jing

To enhance the efficiency of eavesdropping detection in the quantum secure direct communication protocol, an improved quantum secure direct communication protocol based on a four-particle Green-Horne-Zeilinger (GHZ) state is presented. In the protocol, the four-particle GHZ state is used to detect eavesdroppers, and quantum dense coding is used to encode the message. In the security analysis, the method of entropy theory is introduced, and two detection strategies are compared quantitatively by using the constraint between the information that the eavesdroppers can obtain and the interference that has been introduced. If the eavesdropper wants to obtain all the information, the detection rate of the quantum secure direct communication using an Einstein-Podolsky-Rosen (EPR) pair block will be 50% and the detection rate of the presented protocol will be 87%. At last, the security of the proposed protocol is discussed. The analysis results indicate that the protocol proposed is more secure than the others


2006 ◽  
Vol 16 (1) ◽  
pp. 38-41 ◽  
Author(s):  
Cheng Wei-Wen ◽  
Huang Yan-Xia ◽  
Liu Tang-Kun ◽  
Li Hong

Sign in / Sign up

Export Citation Format

Share Document