HUMAN IDENTIFICATION BASED ON GAIT MODELING

2007 ◽  
Vol 04 (01) ◽  
pp. 27-38 ◽  
Author(s):  
BUFU HUANG ◽  
MENG CHEN ◽  
KA KEUNG LEE ◽  
YANGSHENG XU

Human gait is a dynamic biometrical feature which is complex and difficult to imitate. It is unique and more secure than static features such as passwords, fingerprints and facial features. In this paper, we present intelligent shoes for human identification based on human gait modeling and similarity evaluation with hidden Markov models (HMMs). Firstly we describe the intelligent shoe system for collecting human dynamic gait performance. Using the proposed machine learning method hidden Markov models, an individual wearer's gait model is derived and we then demonstrate the procedure for recognizing different wearers by analyzing the corresponding models. Next, we define a hidden-Markov-model-based similarity measure which allows us to evaluate resultant learning models. With the most likely performance criterion, it will help us to derive the similarity of individual behavior and its corresponding model. By utilizing human gait modeling and similarity evaluation based on hidden Markov models, the proposed method has produced satisfactory results for human identification during testing.

2006 ◽  
Vol 14 (15) ◽  
pp. 6643 ◽  
Author(s):  
Jian-Shuen Fang ◽  
Qi Hao ◽  
David J. Brady ◽  
Bob D. Guenther ◽  
Ken Y. Hsu

2015 ◽  
Vol 135 (12) ◽  
pp. 1517-1523 ◽  
Author(s):  
Yicheng Jin ◽  
Takuto Sakuma ◽  
Shohei Kato ◽  
Tsutomu Kunitachi

Author(s):  
M. Vidyasagar

This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. It starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematical, making it useful to engineers and mathematicians, even those not interested in biological applications. A range of exercises is provided, including drills to familiarize the reader with concepts and more advanced problems that require deep thinking about the theory. Biological applications are taken from post-genomic biology, especially genomics and proteomics. The topics examined include standard material such as the Perron–Frobenius theorem, transient and recurrent states, hitting probabilities and hitting times, maximum likelihood estimation, the Viterbi algorithm, and the Baum–Welch algorithm. The book contains discussions of extremely useful topics not usually seen at the basic level, such as ergodicity of Markov processes, Markov Chain Monte Carlo (MCMC), information theory, and large deviation theory for both i.i.d and Markov processes. It also presents state-of-the-art realization theory for hidden Markov models. Among biological applications, it offers an in-depth look at the BLAST (Basic Local Alignment Search Technique) algorithm, including a comprehensive explanation of the underlying theory. Other applications such as profile hidden Markov models are also explored.


Sign in / Sign up

Export Citation Format

Share Document