ON MODULI SPACE OF HIGGS Gp(2n, ℂ)-BUNDLES OVER A RIEMANN SURFACE

2010 ◽  
Vol 07 (02) ◽  
pp. 311-322
Author(s):  
INDRANIL BISWAS ◽  
SARBESWAR PAL

Let X be a compact connected Riemann surface; the holomorphic cotangent bundle of X will be denoted by KX. Let [Formula: see text] denote the moduli space of semistable Higgs Gp (2n, ℂ)-bundles over X of fixed topological type. The complex variety [Formula: see text] has a natural holomorphic symplectic structure. On the other hand, for any ℓ ≥ 1, the Liouville symplectic from on the total space of KX defines a holomorphic symplectic structure on the Hilbert scheme Hilb ℓ(KX) parametrizing the zero-dimensional subschemes of KX. We relate the symplectic form on Hilb ℓ(KX) with the symplectic form on [Formula: see text].

2004 ◽  
Vol 15 (09) ◽  
pp. 907-917 ◽  
Author(s):  
INDRANIL BISWAS ◽  
AVIJIT MUKHERJEE

Let [Formula: see text] be a moduli space of stable parabolic Higgs bundles of rank two over a Riemann surface X. It is a smooth variety defined over [Formula: see text] equipped with a holomorphic symplectic form. Fix a projective structure [Formula: see text] on X. Using [Formula: see text], we construct a quantization of a certain Zariski open dense subset of the symplectic variety [Formula: see text].


2009 ◽  
Vol 11 (01) ◽  
pp. 1-26
Author(s):  
INDRANIL BISWAS ◽  
VICENTE MUÑOZ

Let X be any compact connected Riemann surface of genus g, with g ≥ 3. For any r ≥ 2, let [Formula: see text] denote the moduli space of holomorphic SL (r,ℂ)-connections over X. It is known that the biholomorphism class of the complex variety [Formula: see text] is independent of the complex structure of X. If g = 3, then we assume that r ≥ 3. We prove that the isomorphism class of the variety [Formula: see text] determines the Riemann surface X uniquely up to an isomorphism. A similar result is proved for the moduli space of holomorphic GL (r,ℂ)-connections on X. We also show that the Torelli theorem remains valid for the moduli spaces of connections, as well as those of stable vector bundles, on geometrically irreducible smooth projective curves defined over the field of real numbers.


Author(s):  
Giulio Codogni ◽  
Thomas Krämer

AbstractWe show that the degree of Gauss maps on abelian varieties is semicontinuous in families, and we study its jump loci. As an application we obtain that in the case of theta divisors this degree answers the Schottky problem. Our proof computes the degree of Gauss maps by specialization of Lagrangian cycles on the cotangent bundle. We also get similar results for the intersection cohomology of varieties with a finite morphism to an abelian variety; it follows that many components of Andreotti–Mayer loci, including the Schottky locus, are part of the stratification of the moduli space of ppav’s defined by the topological type of the theta divisor.


2020 ◽  
Vol 7 (1) ◽  
pp. 230-240
Author(s):  
Indranil Biswas ◽  
Tomás L. Gómez ◽  
André Oliveira

AbstractLet M be the moduli space of complex Lagrangian submanifolds of a hyperKähler manifold X, and let ω̄ : 𝒜̂ → M be the relative Albanese over M. We prove that 𝒜̂ has a natural holomorphic symplectic structure. The projection ω̄ defines a completely integrable structure on the symplectic manifold 𝒜̂. In particular, the fibers of ω̄ are complex Lagrangians with respect to the symplectic form on 𝒜̂. We also prove analogous results for the relative Picard over M.


2017 ◽  
Vol 4 (1) ◽  
pp. 263-272 ◽  
Author(s):  
Niccolò Lora Lamia Donin

Abstract In this paper we consider a special class of completely integrable systems that arise as transverse Hilbert schemes of d points of a complex symplectic surface S projecting onto ℂ via a surjective map p which is a submersion outside a discrete subset of S. We explicitly endow the transverse Hilbert scheme Sp[d] with a symplectic form and an endomorphism A of its tangent space with 2-dimensional eigenspaces and such that its characteristic polynomial is the square of its minimum polynomial and show it has the maximal number of commuting Hamiltonians.We then provide the inverse construction, starting from a 2ddimensional holomorphic integrable system W which has an endomorphism A: TW → TW satisfying the above properties and recover our initial surface S with W ≌ Sp[d].


Sign in / Sign up

Export Citation Format

Share Document