ON FINSLER MANIFOLDS WHOSE TANGENT BUNDLE HAS THE g-NATURAL METRIC

2011 ◽  
Vol 08 (07) ◽  
pp. 1593-1610 ◽  
Author(s):  
ESMAEIL PEYGHAN ◽  
AKBAR TAYEBI

In this paper, we introduce a Riemannian metric [Formula: see text] and a family of framed f-structures on the slit tangent bundle [Formula: see text] of a Finsler manifold Fn = (M, F). Then we prove that there exists an almost contact structure on the tangent bundle, when this structure is restricted to the Finslerian indicatrix. We show that this structure is Sasakian if and only if Fn is of positive constant curvature 1. Finally, we prove that (i) Fn is a locally flat Riemannian manifold if and only if [Formula: see text], (ii) the Jacobi operator [Formula: see text] is zero or commuting if and only if (M, F) have the zero flag curvature.

Author(s):  
David E. Blair

SynopsisClassically the tangent sphere bundles have formed a large class of contact manifolds; their contact structures are not in general regular, however. Specifically we prove that the natural contact structure on the tangent sphere bundle of a compact Riemannian manifold of non-positive constant curvature is not regular.


Filomat ◽  
2019 ◽  
Vol 33 (8) ◽  
pp. 2543-2554
Author(s):  
E. Peyghan ◽  
F. Firuzi ◽  
U.C. De

Starting from the g-natural Riemannian metric G on the tangent bundle TM of a Riemannian manifold (M,g), we construct a family of the Golden Riemannian structures ? on the tangent bundle (TM,G). Then we investigate the integrability of such Golden Riemannian structures on the tangent bundle TM and show that there is a direct correlation between the locally decomposable property of (TM,?,G) and the locally flatness of manifold (M,g).


Author(s):  
Thomas Hasanis

AbstractA sufficient condition, for a complete submanifold of a Riemannian manifold of positive constant curvature to be umbilical, is given. The condition will be given by an inequality which is established between the length of the second fundamental tensor and the mean curvature.


2020 ◽  
Vol 17 (08) ◽  
pp. 2050122
Author(s):  
Andrew James Bruce

We show how to lift a Riemannian metric and almost symplectic form on a manifold to a Riemannian structure on a canonically associated supermanifold known as the antitangent or shifted tangent bundle. We view this construction as a generalization of Sasaki’s construction of a Riemannian metric on the tangent bundle of a Riemannian manifold.


2012 ◽  
Vol 23 (02) ◽  
pp. 1250043
Author(s):  
MAHUYA DATTA

In this article, we obtain the following generalization of isometric C1-immersion theorem of Nash and Kuiper. Let M be a smooth manifold of dimension m and H a rank k subbundle of the tangent bundle TM with a Riemannian metric gH. Then the pair (H, gH) defines a sub-Riemannian structure on M. We call a C1-map f : (M, H, gH) → (N, h) into a Riemannian manifold (N, h) a partial isometry if the derivative map df restricted to H is isometric, that is if f*h|H = gH. We prove that if f0 : M → N is a smooth map such that df0|H is a bundle monomorphism and [Formula: see text], then f0 can be homotoped to a C1-map f : M → N which is a partial isometry, provided dim N > k. As a consequence of this result, we obtain that every sub-Riemannian manifold (M, H, gH) admits a partial isometry in ℝn, provided n ≥ m + k.


2003 ◽  
Vol 2003 (18) ◽  
pp. 1155-1165 ◽  
Author(s):  
Aurel Bejancu ◽  
Hani Reda Farran

We prove that any simply connected and complete Riemannian manifold, on which a Randers metric of positive constant flag curvature exists, must be diffeomorphic to an odd-dimensional sphere, provided a certain 1-form vanishes on it.


1972 ◽  
Vol 13 (4) ◽  
pp. 447-450 ◽  
Author(s):  
M. C. Chaki ◽  
D. Ghosh

Let M be an n-dimensional (n = 2m + 1, m ≦ 1) real differentiable manifold. if on M there exist a tensor field , a contravariant vector field ξi and a convariant vector field ηi such that then M is said to have an almost contact structure with the structure tensors (φ,ξ, η) [1], [2]. Further, if a positive definite Riemannian metric g satisfies the conditions then g is called an associated Riemannian metric to the almost contact structure and M is then said to have an almost contact metric structure. On the other hand, M is said to have a contact structure [2], [4] if there exists a 1-form η over M such that η ∧ (dη)m ≠ 0 everywhere over M where dη means the exterior derivation of η and the symbol ∧ means the exterior multiplication. In this case M is said to be a contact manifold with contact form η. It is known [2, Th. 3,1] that if η = ηidxi is a 1-form defining a contact structure, then there exists a positive definite Riemannian metric in gij such that and define an almost contact metric structure with and ηi where the symbol ∂i standing for ∂/∂xi.


2018 ◽  
Vol 26 (2) ◽  
pp. 137-145
Author(s):  
Amir Baghban ◽  
Esmaeil Abedi

AbstractIn this paper, the standard almost complex structure on the tangent bunle of a Riemannian manifold will be generalized. We will generalize the standard one to the new ones such that the induced (0, 2)-tensor on the tangent bundle using these structures and Liouville 1-form will be a Riemannian metric. Moreover, under the integrability condition, the curvature operator of the base manifold will be classified.


Sign in / Sign up

Export Citation Format

Share Document