scholarly journals Comprehensive quasi-Einstein spacetime with application to general relativity

Author(s):  
Punam Gupta ◽  
Sanjay Kumar Singh

The aim of this paper is to extend the notion of all known quasi-Einstein (QE) manifolds like generalized QE, mixed generalized QE manifold, pseudo generalized QE manifold and many more and name it comprehensive QE manifold [Formula: see text]. We investigate some geometric and physical properties of the comprehensive QE manifolds [Formula: see text] under certain conditions. We study the conformal and conharmonic mappings between [Formula: see text] manifolds. Then we examine the [Formula: see text] with harmonic Weyl tensor. We define the manifold of comprehensive quasi-constant curvature and prove that conformally flat [Formula: see text] is manifold of comprehensive quasi-constant curvature and vice versa. We study the general two viscous fluid spacetime [Formula: see text] and find out some important consequences about [Formula: see text]. We study [Formula: see text] with vanishing space matter tensor. Finally, we prove the existence of such manifolds by constructing nontrivial example.

2014 ◽  
Vol 11 (08) ◽  
pp. 1450070 ◽  
Author(s):  
Carlo Alberto Mantica ◽  
Luca Guido Molinari

We introduce the new algebraic property of Weyl compatibility for symmetric tensors and vectors. It is strictly related to Riemann compatibility, which generalizes the Codazzi condition while preserving much of its geometric implications. In particular, it is shown that the existence of a Weyl compatible vector implies that the Weyl tensor is algebraically special, and it is a necessary and sufficient condition for the magnetic part to vanish. Some theorems (Derdziński and Shen [11], Hall [15]) are extended to the broader hypothesis of Weyl or Riemann compatibility. Weyl compatibility includes conditions that were investigated in the literature of general relativity (as in McIntosh et al. [16, 17]). A simple example of Weyl compatible tensor is the Ricci tensor of an hypersurface in a manifold with constant curvature.


2016 ◽  
Vol 13 (02) ◽  
pp. 1650015 ◽  
Author(s):  
Carlo Alberto Mantica ◽  
Young Jin Suh

In this paper we present some new results about [Formula: see text]-dimensional pseudo-Z symmetric space-times. First we show that if the tensor Z satisfies the Codazzi condition then its rank is one, the space-time is a quasi-Einstein manifold, and the associated 1-form results to be null and recurrent. In the case in which such covector can be rescaled to a covariantly constant we obtain a Brinkmann-wave. Anyway the metric results to be a subclass of the Kundt metric. Next we investigate pseudo-Z symmetric space-times with harmonic conformal curvature tensor: a complete classification of such spaces is obtained. They are necessarily quasi-Einstein and represent a perfect fluid space-time in the case of time-like associated covector; in the case of null associated covector they represent a pure radiation field. Further if the associated covector is locally a gradient we get a Brinkmann-wave space-time for [Formula: see text] and a pp-wave space-time in [Formula: see text]. In all cases an algebraic classification for the Weyl tensor is provided for [Formula: see text] and higher dimensions. Then conformally flat pseudo-Z symmetric space-times are investigated. In the case of null associated covector the space-time reduces to a plane wave and results to be generalized quasi-Einstein. In the case of time-like associated covector we show that under the condition of divergence-free Weyl tensor the space-time admits a proper concircular vector that can be rescaled to a time like vector of concurrent form and is a conformal Killing vector. A recent result then shows that the metric is necessarily a generalized Robertson–Walker space-time. In particular we show that a conformally flat [Formula: see text], [Formula: see text], space-time is conformal to the Robertson–Walker space-time.


2018 ◽  
Vol 27 (06) ◽  
pp. 1841012 ◽  
Author(s):  
Victor Berezin ◽  
Vyacheslav Dokuchaev ◽  
Yury Eroshenko

The spherically symmetric thin shells are the nearest generalizations of the point-like particles. Moreover, they serve as the simple sources of the gravitational fields both in General Relativity and much more complex quadratic gravity theories. We are interested in the special and physically important case when all the quadratic in curvature tensor (Riemann tensor) and its contractions (Ricci tensor and scalar curvature) terms are present in the form of the square of Weyl tensor. By definition, the energy–momentum tensor of the thin shell is proportional to Diracs delta-function. We constructed the theory of the spherically symmetric thin shells for three types of gravitational theories with the shell: (1) General Relativity; (2) Pure conformal (Weyl) gravity where the gravitational part of the total Lagrangian is just the square of the Weyl tensor; (3) Weyl–Einstein gravity. The results are compared with these in General Relativity (Israel equations). We considered in detail the shells immersed in the vacuum. Some peculiar properties of such shells are found. In particular, for the traceless ([Formula: see text] massless) shell, it is shown that their dynamics cannot be derived from the matching conditions and, thus, is completely arbitrary. On the contrary, in the case of the Weyl–Einstein gravity, the trajectory of the same type of shell is completely restored even without knowledge of the outside solution.


1991 ◽  
Vol 185 (2) ◽  
pp. 211-222 ◽  
Author(s):  
Raj Bali ◽  
Deepak Raj Jain

2007 ◽  
Vol 22 (40) ◽  
pp. 3013-3026 ◽  
Author(s):  
KIRILL KRASNOV

We review the status of a certain (infinite) class of four-dimensional generally covariant gravity theories propagating two degrees of freedom that are formulated without any direct mention of the metric. General relativity itself (in its Plebański formulation) belongs to the class, so these theories are examples of modified gravity. We summarize the current understanding of the nature of the modification, of the renormalizability properties of these theories, of their coupling to matter fields, and describe some of their physical properties.


Sign in / Sign up

Export Citation Format

Share Document