scholarly journals The theory of spherically symmetric thin shells in conformal gravity

2018 ◽  
Vol 27 (06) ◽  
pp. 1841012 ◽  
Author(s):  
Victor Berezin ◽  
Vyacheslav Dokuchaev ◽  
Yury Eroshenko

The spherically symmetric thin shells are the nearest generalizations of the point-like particles. Moreover, they serve as the simple sources of the gravitational fields both in General Relativity and much more complex quadratic gravity theories. We are interested in the special and physically important case when all the quadratic in curvature tensor (Riemann tensor) and its contractions (Ricci tensor and scalar curvature) terms are present in the form of the square of Weyl tensor. By definition, the energy–momentum tensor of the thin shell is proportional to Diracs delta-function. We constructed the theory of the spherically symmetric thin shells for three types of gravitational theories with the shell: (1) General Relativity; (2) Pure conformal (Weyl) gravity where the gravitational part of the total Lagrangian is just the square of the Weyl tensor; (3) Weyl–Einstein gravity. The results are compared with these in General Relativity (Israel equations). We considered in detail the shells immersed in the vacuum. Some peculiar properties of such shells are found. In particular, for the traceless ([Formula: see text] massless) shell, it is shown that their dynamics cannot be derived from the matching conditions and, thus, is completely arbitrary. On the contrary, in the case of the Weyl–Einstein gravity, the trajectory of the same type of shell is completely restored even without knowledge of the outside solution.

2012 ◽  
Vol 27 (40) ◽  
pp. 1250231 ◽  
Author(s):  
HÜSNÜ BAYSAL

We have calculated the total energy–momentum distribution associated with (n+2)-dimensional spherically symmetric model of the universe by using the Møller energy–momentum definition in general relativity (GR). We have found that components of Møller energy and momentum tensor for given spacetimes are different from zero. Also, we are able to get energy and momentum density of various well-known wormholes and black hole models by using the (n+2)-dimensional spherically symmetric metric. Also, our results have been discussed and compared with the results for four-dimensional spacetimes in literature.


2017 ◽  
Vol 26 (14) ◽  
pp. 1750158 ◽  
Author(s):  
S. Habib Mazharimousavi ◽  
M. Halilsoy ◽  
S. N. Hamad Amen

We study spherically symmetric timelike thin-shells in [Formula: see text]-dimensional bulk spacetime with a variable equation-of-state for the fluid presented on the shell. In such a fluid, the angular pressure [Formula: see text] is a function of both surface energy density [Formula: see text] and the radius [Formula: see text] of the thin-shell. Explicit cases of the thin shells connecting two nonidentical cloud of strings spacetimes and a flat Minkowski spacetime to the Schwarzschild metric are investigated.


1999 ◽  
Vol 08 (04) ◽  
pp. 549-555 ◽  
Author(s):  
KONSTANTIN G. ZLOSHCHASTIEV

The spherically symmetric thin shells of the barotropic fluids with the linear equation of state are considered within the frameworks of general relativity. We study several aspects of the shells as completely relativistic models of stars, first of all the neutron stars and white dwarfs, and circumstellar shells. The exact equations of motion of the shells are obtained. Also we calculate the parameters of the equilibrium configurations, including the radii of static shells. Finally, we study the stability of the equilibrium shells against radial perturbations.


The structure of polyhomogeneous space-times (i.e. space-times with metrics which admit an expansion in terms of r -j log i r) constructed by a Bondi-Sachs type method is analysed. The occurrence of some log terms in an asymptotic expan­sion of the metric is related to the non-vanishing of the Weyl tensor at ℐ. The validity in this more general context of various results from the standard treat­ment of ℐ, including the Bondi mass loss formula, the peeling-off of the Riemann tensor and the Newman-Penrose constants of motion, is considered.


2019 ◽  
Vol 34 (27) ◽  
pp. 1950215 ◽  
Author(s):  
M. Farasat Shamir ◽  
Nabeeha Uzair

The aim of this paper is to examine the irregularity factors of a self-gravitating stellar system in the existence of anisotropic fluid. We investigate the dynamics of field equations within [Formula: see text] background, where [Formula: see text] is the Gauss–Bonnet invariant and [Formula: see text] is the trace of the energy–momentum tensor. Moreover, we have investigated two differential equations using the conservation law and the Weyl tensor. We have determined the irregularity factors of spherical stellar system for some specific conditions of anisotropic and isotropic fluids, dust, radiating and non-radiating systems in [Formula: see text] gravity. It has been noted that the dissipative matter results in anisotropic stresses and makes the system more complex. The inhomogeneity factor is correlated to one of the scalar functions.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Alfredo Pérez

Abstract Asymptotic symmetries in Carrollian gravitational theories in 3+1 space and time dimensions obtained from “magnetic” and “electric” ultrarelativistic contractions of General Relativity are analyzed. In both cases, parity conditions are needed to guarantee a finite symplectic term, in analogy with Einstein gravity. For the magnetic contraction, when Regge-Teitelboim parity conditions are imposed, the asymptotic symmetries are described by the Carroll group. With Henneaux-Troessaert parity conditions, the asymptotic symmetry algebra corresponds to a BMS-like extension of the Carroll algebra. For the electric contraction, because the lapse function does not appear in the boundary term needed to ensure a well-defined action principle, the asymptotic symmetry algebra is truncated, for Regge-Teitelboim parity conditions, to the semidirect sum of spatial rotations and spatial translations. Similarly, with Henneaux-Troessaert parity conditions, the asymptotic symmetries are given by the semidirect sum of spatial rotations and an infinite number of parity odd supertranslations. Thus, from the point of view of the asymptotic symmetries, the magnetic contraction can be seen as a smooth limit of General Relativity, in contrast to its electric counterpart.


1999 ◽  
Vol 08 (03) ◽  
pp. 363-371 ◽  
Author(s):  
KONSTANTIN G. ZLOSHCHASTIEV

The spherically symmetric thin shells of the macroscopically stable quark-gluon matter are considered within the frameworks of the bag model and theory of discontinuities in general relativity. The equation of state for the two-dimensional matter is suggested, and its features are discussed. The exact equations of motion of such shells are obtained. Distinguishing the two cases, circumstellar and microscopical shells, we calculate the parameters of equilibrium configurations, including the conditions of decay (deconfinement).


1965 ◽  
Vol 6 (1) ◽  
pp. 1-5 ◽  
Author(s):  
P. G. Bergmann ◽  
M. Cahen ◽  
A. B. Komar

Sign in / Sign up

Export Citation Format

Share Document