NULL SURFACES AND CONTACT GEOMETRY

2005 ◽  
Vol 02 (02) ◽  
pp. 481-496
Author(s):  
S. FRITTELLI ◽  
N. KAMRAN ◽  
C. KOZAMEH ◽  
E. T. NEWMAN

We give a self-contained and geometric account of a recent approach to the Einstein field equations of general relativity, based on families of null foliations of space–time. We then use exterior differential systems to make explicit the correspondence between conformal Lorentzian geometry in dimensions three and four and the contact geometry of special classes of differential systems.

Synthese ◽  
2021 ◽  
Author(s):  
Antonio Vassallo

AbstractThe dynamics of general relativity is encoded in a set of ten differential equations, the so-called Einstein field equations. It is usually believed that Einstein’s equations represent a physical law describing the coupling of spacetime with material fields. However, just six of these equations actually describe the coupling mechanism: the remaining four represent a set of differential relations known as Bianchi identities. The paper discusses the physical role that the Bianchi identities play in general relativity, and investigates whether these identities—qua part of a physical law—highlight some kind of a posteriori necessity in a Kripkean sense. The inquiry shows that general relativistic physics has an interesting bearing on the debate about the metaphysics of the laws of nature.


2005 ◽  
Vol 14 (03n04) ◽  
pp. 667-676 ◽  
Author(s):  
S. D. MAHARAJ ◽  
M. GOVENDER

In a recent approach in modeling a radiating relativistic star undergoing gravitational collapse the role of the Weyl stresses was emphasized. It is possible to generate a model which is physically reasonable by approximately solving the junction conditions at the boundary of the star. In this paper we demonstrate that it is possible to solve the Einstein field equations and the junction conditions exactly. This exact solution contains the Friedmann dust solution as a limiting case. We briefly consider the radiative transfer within the framework of extended irreversible thermodynamics and show that relaxational effects significantly alter the temperature profiles.


Author(s):  
Andreas Boenke

The intention of this paper is to point out a remarkable hitherto unknown effect of General Relativity. Starting from fundamental physical principles and phenomena arising from General Relativity, it is demonstrated by a simple Gedankenexperiment that a gravitational lens enhances not only the light intensity of a background object but also its gravitational field strength by the same factor. Thus, multiple images generated by a gravitational lens are not just optical illusions, they also have a gravitational effect at the location of the observer! The "Gravitationally Lensed Gravitation" (GLG) may help to better understand the rotation curves of galaxies since it leads to an enhancement of the gravitational interactions of the stars. Furthermore, it is revealed that besides a redshift of the light of far distant objects, the cosmic expansion also causes a corresponding weakening of their gravitational effects. The explanations are presented entirely without metric representation and tensor formalism. Instead, the behavior of light is used to indicate the effect of spacetime curvature. The gravitation is described by the field strength which is identical to the free fall acceleration. The new results thus obtained provide a reference for future numerical calculations based on the Einstein field equations.


2019 ◽  
pp. 52-58
Author(s):  
Steven Carlip

The Einstein field equations are the fundamental equations of general relativity. After a brief qualitative discussion of geodesic deviation and Newtonian gravity, this chapter derives the field equations from the Einstein-Hilbert action. The chapter contains a derivation of Noether’s theorem and the consequent conservation laws, and a brief discussion of generalizations of the Einstein-Hilbert action.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Prasenjit Paul ◽  
Rikpratik Sengupta

It was first observed at the end of the last century that the universe is presently accelerating. Ever since, there have been several attempts to explain this observation theoretically. There are two possible approaches. The more conventional one is to modify the matter part of the Einstein field equations, and the second one is to modify the geometry part. We shall consider two phenomenological models based on the former, more conventional approach within the context of general relativity. The phenomenological models in this paper consider a Λ term firstly a function of a¨/a and secondly a function of ρ, where a and ρ are the scale factor and matter energy density, respectively. Constraining the free parameters of the models with the latest observational data gives satisfactory values of parameters as considered by us initially. Without any field theoretic interpretation, we explain the recent observations with a dynamical cosmological constant.


Sign in / Sign up

Export Citation Format

Share Document