On 2-Symmetric Words and Verbal Subgroup of Metabelian Product of Abelian Groups

2006 ◽  
Vol 13 (03) ◽  
pp. 535-540
Author(s):  
Jiangmin Pan

Let F be the free group of rank 2 with basis {x, y}, and G a metabelian product of some non-trivial abelian groups. If not all the factors of G are torsion groups, it is proved that the verbal subgroup of G in F equals F″. Moreover, all the 2-symmetric words of G are determined by using left Fox derivatives. In addition, we provide an example to illustrate that if all the factors of G are torsion groups, the above results need not be true.

2019 ◽  
Vol 100 (1) ◽  
pp. 68-75
Author(s):  
CRISTINA ACCIARRI ◽  
ANDREA LUCCHINI

For a group $G$, let $\unicode[STIX]{x1D6E4}(G)$ denote the graph defined on the elements of $G$ in such a way that two distinct vertices are connected by an edge if and only if they generate $G$. Let $\unicode[STIX]{x1D6E4}^{\ast }(G)$ be the subgraph of $\unicode[STIX]{x1D6E4}(G)$ that is induced by all the vertices of $\unicode[STIX]{x1D6E4}(G)$ that are not isolated. We prove that if $G$ is a 2-generated noncyclic abelian group, then $\unicode[STIX]{x1D6E4}^{\ast }(G)$ is connected. Moreover, $\text{diam}(\unicode[STIX]{x1D6E4}^{\ast }(G))=2$ if the torsion subgroup of $G$ is nontrivial and $\text{diam}(\unicode[STIX]{x1D6E4}^{\ast }(G))=\infty$ otherwise. If $F$ is the free group of rank 2, then $\unicode[STIX]{x1D6E4}^{\ast }(F)$ is connected and we deduce from $\text{diam}(\unicode[STIX]{x1D6E4}^{\ast }(\mathbb{Z}\times \mathbb{Z}))=\infty$ that $\text{diam}(\unicode[STIX]{x1D6E4}^{\ast }(F))=\infty$.


1993 ◽  
Vol 114 (1) ◽  
pp. 143-147 ◽  
Author(s):  
R. M. Bryant ◽  
C. K. Gupta

Let Fn be a free group of finite rank n with basis {x1,…, xn}. Let be a variety of groups and write for the verbal subgroup of Fn corresponding to . (See [11] for information on varieties and related concepts.) Every automorphism of Fn induces an automorphism of the relatively free group Fn/V, and those automorphisms of Fn/V arising in this way are called tame. If is the variety of all metabelian groups and n ╪ 3 then every automorphism of Fn/V is tame [2, 4, 12]. But this is an exceptional situation. For many (and probably most) other varieties , Fn/V has non-tame automorphisms for all sufficiently large n. This holds for the variety of all nilpotent groups of class at most c where c ≥ 3 [1, 3] and for nearly all product varieties including, in particular, the variety of all groups whose derived groups are nilpotent of class at most c, where c > 2 [10, 13].


Author(s):  
Michele Rossi ◽  
Lea Terracini

AbstractLet X be a $$\mathbb {Q}$$ Q -factorial complete toric variety over an algebraic closed field of characteristic 0. There is a canonical injection of the Picard group $$\mathrm{Pic}(X)$$ Pic ( X ) in the group $$\mathrm{Cl}(X)$$ Cl ( X ) of classes of Weil divisors. These two groups are finitely generated abelian groups; while the first one is a free group, the second one may have torsion. We investigate algebraic and geometrical conditions under which the image of $$\mathrm{Pic}(X)$$ Pic ( X ) in $$\mathrm{Cl}(X)$$ Cl ( X ) is contained in a free part of the latter group.


2020 ◽  
Vol 2020 (762) ◽  
pp. 123-166
Author(s):  
Yuan Liu ◽  
Melanie Matchett Wood

AbstractWe show that, as n goes to infinity, the free group on n generators, modulo {n+u} random relations, converges to a random group that we give explicitly. This random group is a non-abelian version of the random abelian groups that feature in the Cohen–Lenstra heuristics. For each n, these random groups belong to the few relator model in the Gromov model of random groups.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hip Kuen Chong ◽  
Daniel T. Wise

Abstract We study a family of finitely generated residually finite groups. These groups are doubles F 2 * H F 2 F_{2}*_{H}F_{2} of a rank-2 free group F 2 F_{2} along an infinitely generated subgroup 𝐻. Varying 𝐻 yields uncountably many groups up to isomorphism.


1981 ◽  
Vol 33 (4) ◽  
pp. 817-825 ◽  
Author(s):  
Paul Hill

All groups herein are assumed to be abelian. It was not until the 1940's that it was known that a subgroup of an infinite direct sum of finite cyclic groups is again a direct sum of cyclics. This result rests on a general criterion due to Kulikov [7] for a primary abelian group to be a direct sum of cyclic groups. If G is p-primary, Kulikov's criterion presupposes that G has no elements (other than zero) having infinite p-height. For such a group G, the criterion is simply that G be the union of an ascending sequence of subgroups Hn where the heights of the elements of Hn computed in G are bounded by some positive integer λ(n). The theory of abelian groups has now developed to the point that totally projective groups currently play much the same role, at least in the theory of torsion groups, that direct sums of cyclic groups and countable groups played in combination prior to the discovery of totally projective groups and their structure beginning with a paper by R. Nunke [11] in 1967.


Author(s):  
Rüdiger Göbel

AbstractEpimorphic images of compact (algebraically compact) abelian groups are called cotorsion groups after Harrison. In a recent paper, Ph. Schultz raised the question whether “cotorsion” is a property which can be recognized by its small cotorsion epimorphic images: If G is a torsion-free group such that every torsion-free reduced homomorphic image of cardinality is cotorsion, is G necessarily cortorsion? In this note we will give some counterexamples to this problem. In fact, there is no cardinal k which is large enough to test cotorsion.


1969 ◽  
Vol 12 (5) ◽  
pp. 653-660 ◽  
Author(s):  
Trueman MacHenry
Keyword(s):  

Let F be a free group of rank ⩾ 2, let F/R ≅ π, and let F0 = F/[R, R]. Auslander and Lyndon showed that the center of Fo is a subgroup of R/[R, R] = Ro, and that it is non-trivial if and only if π is finite [1, corollary 1.3 and theorem 2]. In this paper it will be shown that there is a canonically defined (and not always trivial) quotient group of the center of F which depends only on π.


2015 ◽  
Vol 14 (10) ◽  
pp. 1550139 ◽  
Author(s):  
José L. Rodríguez ◽  
Lutz Strüngmann

In this paper, we first show that for every natural number n and every countable reduced cotorsion-free group K there is a short exact sequence [Formula: see text] such that the map G → H is a cellular cover over H and the rank of H is exactly n. In particular, the free abelian group of infinite countable rank is the kernel of a cellular exact sequence of co-rank 2 which answers an open problem from Rodríguez–Strüngmann [J. L. Rodríguez and L. Strüngmann, Mediterr. J. Math.6 (2010) 139–150]. Moreover, we give a new method to construct cellular exact sequences with prescribed torsion free kernels and cokernels. In particular we apply this method to the class of ℵ1-free abelian groups in order to complement results from the cited work and Göbel–Rodríguez–Strüngmann [R. Göbel, J. L. Rodríguez and L. Strüngmann, Fund. Math.217 (2012) 211–231].


1974 ◽  
Vol 17 (4) ◽  
pp. 479-482 ◽  
Author(s):  
K. Benabdallah

Fuchs, in [3], problem 14, proposes the study of pure-high subgroups of an abelian group. In this paper we show that in abelian torsion groups, pure-high subgroups are also high. A natural problem arises, that of characterizing the pure-absolute summands. We show that this concept is the same as absolute summands in torsion groups, but that it is more general in mixed abelian groups. There is a definite connection between the existence of pure TV-high subgroups and the splitting of mixed groups. The notation is that of [3].


Sign in / Sign up

Export Citation Format

Share Document