scholarly journals Principal Blocks and the Steinberg Character

2010 ◽  
Vol 17 (03) ◽  
pp. 361-364 ◽  
Author(s):  
Gerhard Hiss

We determine the finite simple groups of Lie type of characteristic p, for which the Steinberg character lies in the principal ℓ-block for every prime ℓ ≠ p dividing the order of the group.

1971 ◽  
Vol 12 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Bhama Srinivasan

Let K be an algebraically closed field of characteristic ρ >0. If G is a connected, simple connected, semisimple linear algebraic group defined over K and σ an endomorphism of G onto G such that the subgroup Gσ of fixed points of σ is finite, Steinberg ([6] [7]) has shown that there is a complex irreducible character χ of Gσ with the following properties. χ vanishes at all elements of Gσ which are not semi- simple, and, if x ∈ G is semisimple, χ(x) = ±n(x) where n(x)is the order of a Sylow p-subgroup of (ZG(x))σ (ZG(x) is the centraliser of x in G). If G is simple he has, in [6], identified the possible groups Gσ they are the Chevalley groups and their twisted analogues over finite fields, that is, the ‘simply connected’ versions of finite simple groups of Lie type. In this paper we show, under certain restrictions on the type of the simple algebraic group G an on the characteristic of K, that χ can be expressed as a linear combination with integral coefficients of characters induced from linear characters of certain naturally defined subgroups of Gσ. This expression for χ gives an explanation for the occurence of n(x) in the formula for χ (x), and also gives an interpretation for the ± 1 occuring in the formula in terms of invariants of the reductive algebraic group ZG(x).


2020 ◽  
Vol 23 (6) ◽  
pp. 999-1016
Author(s):  
Anatoly S. Kondrat’ev ◽  
Natalia V. Maslova ◽  
Danila O. Revin

AbstractA subgroup H of a group G is said to be pronormal in G if H and {H^{g}} are conjugate in {\langle H,H^{g}\rangle} for every {g\in G}. In this paper, we determine the finite simple groups of type {E_{6}(q)} and {{}^{2}E_{6}(q)} in which all the subgroups of odd index are pronormal. Thus, we complete a classification of finite simple exceptional groups of Lie type in which all the subgroups of odd index are pronormal.


1973 ◽  
Vol 16 (4) ◽  
pp. 495-506 ◽  
Author(s):  
W. J. Wong

Presentation in terms of generators and relations for the classical finite simple groups of Lie type have been given by Steinberg and Curtis [2,4]. These presentations are useful in proving characterzation theorems for these groups, as in the author's work on the projective symplectic groups [5]. However, in some cases, the application is not quite instantaneous, and an intermediate result is needed to provide a presentation more suitable for the situation in hand. In this paper we prove such a result, for the orthogonal simple groups over finite fields of odd characteristic. In a subsequent article we shall use this to give a characterization of these groups in terms of the structure of the centralizer of an involution.


2008 ◽  
Vol 15 (02) ◽  
pp. 241-278
Author(s):  
Gerhard O. Michler ◽  
Lizhong Wang

In this article we give a self-contained existence and uniqueness proof for the Tits simple group T. Parrott gave the first uniqueness proof. Whereas Tits' and Parrott's results employ the theory of finite groups of Lie type, our existence and uniqueness proof follows from the general algorithms and uniqueness criteria for abstract finite simple groups described in the first author's book [11]. All we need from the previous papers is the fact that the centralizer H of the Tits group T is an extension of a 2-group J with order 29 and nilpotency class 3 by a Frobenius group F of order 20 such that the center Z(H) has order 2 and any Sylow 5-subgroup Q of H has a centralizer CJ(Q) ≤ Z(H).


2005 ◽  
Vol 12 (03) ◽  
pp. 431-442 ◽  
Author(s):  
A. R. Moghaddamfar ◽  
A. R. Zokayi ◽  
M. R. Darafsheh

If G is a finite group, we define its prime graph Γ(G) as follows. The vertices of Γ(G) are the primes dividing the order of G and two distinct vertices p, q are joined by an edge, denoted by p~q, if there is an element in G of order pq. Assume [Formula: see text] with primes p1<p2<⋯<pkand natural numbers αi. For p∈π(G), let the degree of p be deg (p)=|{q∈π(G)|q~p}|, and D(G):=( deg (p1), deg (p2),…, deg (pk)). In this paper, we prove that if G is a finite group such that D(G)=D(M) and |G|=|M|, where M is one of the following simple groups: (1) sporadic simple groups, (2) alternating groups Apwith p and p-2 primes, (3) some simple groups of Lie type, then G≅M. Moreover, we show that if G is a finite group with OC (G)={29.39.5.7, 13}, then G≅S6(3) or O7(3), and finally, we show that if G is a finite group such that |G|=29.39.5.7.13 and D(G)=(3,2,2,1,0), then G≅S6(3) or O7(3).


Sign in / Sign up

Export Citation Format

Share Document