Synthesis, characterization, photophysicochemical properties and theoretical study of novel zinc phthalocyanine containing four tetrathia macrocycles

2018 ◽  
Vol 22 (01n03) ◽  
pp. 77-87 ◽  
Author(s):  
Mohamad Albakour ◽  
Gülenay Tunç ◽  
Büşra Akyol ◽  
Sinem Tuncel Kostakoğlu ◽  
Savaş Berber ◽  
...  

In this work, Zn(II) phthalocyanine derivative (TTU-Pc) bearing 13-membered tetrathia macrocycles was synthesized, and the novel Zn(II) phthalocyanine derivative was fully characterized by elemental analysis and general spectroscopic methods such as MALDI-TOF mass, FT-IR, UV-vis and [Formula: see text]H-NMR. The synthesized phthalocyanine derivative has quite limited solubility in most of the common organic solvents. Fluorescence measurement was conducted for this Zn(II)phthalocyanine to estimate its fluorescence quantum yields. The singlet oxygen generation ability was also examined to investigate its photosensitizer properties. General trends were described for quantum yields of fluorescence, photodegradation and singlet oxygen quantum yields of this compound. The electrochemical properties of the molecule were investigated by cyclic voltammetry (CV) and square wave voltammetry (SWV). In addition, the lowest energy structure, the electronic structure and frontier molecular orbitals were calculated in DFT and the excitation spectrum was obtained by TDDFT calculations. We found that our computational and experimental results were in agreement.

2018 ◽  
Vol 22 (01n03) ◽  
pp. 266-278 ◽  
Author(s):  
Halid Kuruca ◽  
Baybars Köksoy ◽  
Begümhan Karapınar ◽  
Mahmut Durmuş ◽  
Mustafa Bulut

In this study, ethyl 7-hydroxy-6-chloro-4-methylcoumarin-3-propanoate (1), ethyl 7-(2,3-dicyanophenoxy)-6-chloro-4-methylcoumarin-3-propanoate (2), ethyl 7-(3,4-dicyanophenoxy)-6-chloro-4-methylcoumarin-3-propanoate (3), ethyl 4-chloro-5-(7-oxy-6-chloro-4-methylcoumarin-3-propanoate)phthalonitrile (4) were synthesized. The phthalonitrile derivatives (2, 3 and 4) were converted to their peripheral tetra, non-peripheral tetra and peripheral chlorocta substituted zinc(II) and chloroindium phthalocyanine derivatives. All novel compounds were characterized by elemental analysis, FT-IR, [Formula: see text]H-NMR, MALDI-TOF mass spectrometry and UV-vis spectral data. Additionally, the spectral, photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen generation and photodegradation under light irradiation) properties of the resulting substituted phthalocyaninatozinc(II) and indium(III) chloride complexes (5–10) were investigated in DMF, and the obtained results were compared for determination of the effects of the substituents’ positions and the variety of the central metal atom on these properties. The fluorescence quenching behavior of these phthalocyanines (5–10) were also investigated using 1,4-benzoquinone as a quencher. The obtained ethyl 7-oxy-6-chloro-4-methylcoumarin-3-propanoate bearing phthalocyaninatozinc(II) (5, 7 and 9) and indium(III) chloride (6, 8 and 10) complexes showed excellent solubility in most organic solvents. They produced high singlet-oxygen and showed appropriate photodegradation which is very important for photodynamic therapy applications.


2020 ◽  
Vol 25 (01) ◽  
pp. 66-74
Author(s):  
Kevser Harmandar ◽  
Esra N. Kaya ◽  
Mehmet F. Saglam ◽  
Ibrahim F. Sengul ◽  
Devrim Atilla

Tetra substituted peripheral and non-peripheral Zn(II) phthalocyanines were successfully synthesized employing 4-(bis(3-methyl-1H-indol-2-yl)methyl)phenol as a starting material. The structure of these synthesized compounds was confirmed using 1H NMR, [Formula: see text]C NMR, infrared (IR), UV-vis, and MALDI-TOF spectral data. The photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen generation) properties of all synthesized peripheral and non-peripheral compounds were investigated in order to determine the potential of these compounds for application in photodynamic therapy.


2018 ◽  
Vol 22 (11) ◽  
pp. 1010-1021 ◽  
Author(s):  
Arif Hışır ◽  
Gülşah Gümrükcü Köse ◽  
Göknur Yaşa Atmaca ◽  
Ali Erdoğmuş ◽  
Gülnur Keser Karaoğlan

In order to improve the efficacy of photochemical properties for photodynamic therapy (PDT) applications, carboxylic acid groups axially conjugated with silicon(IV) and at the peripheral position with zinc(II) phthalocyanine skeletons for new photosensitizers to investigate the influence of the COOH group positions on the photophysicochemical performance are described in this study. Silicon (IV) (3 and 5) and zinc (II) (7) phthalocyanines were characterized by UV-vis, FTIR, 1H-NMR, MALDI-TOF MS and elemental analysis spectral data. Furthermore, the photophysical (fluorescence quantum yields and fluorescence quenching studies), photochemical (photodegradation and singlet oxygen generation) and aggregation properties of the newly synthesized phthalocyanines were investigated in dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) solutions. The results were compared with that of zinc and silicon phthalocyanines. Singlet oxygen quantum yields ranged from 0.23 to 0.63 via Type II mechanism under the experimental conditions studied. The fluorescence of the phthalocyanine complexes (3, 5 and 7) is effectively quenched by 1,4-benzoquinone (BQ) in DMSO, DMF and THF.


2017 ◽  
Vol 21 (07n08) ◽  
pp. 539-546 ◽  
Author(s):  
Özge Göktuğ ◽  
Cem Göl ◽  
Mahmut Durmuş

In this study, the monomeric subphthalocyanines bearing azido (2) and terminal ethynyl (3) groups were synthesized. These subphthalocyanines were converted to their dimeric derivatives using azide-alkyne Huisgen cycloaddition and palladium-catalyzed Glaser–Hay coupling reactions subphthalocyanine (4) and (5), respectively. The novel subphthalocyanines were fully characterized by elemental analysis and general spectroscopic methods such as MALDI-TOF mass, FT-IR, UV-vis and [Formula: see text]H-NMR. All synthesized subphthalocyanines showed quite good solubility in the most of common organic solvents. The fluorescence measurements were conducted for these subphthalocyanines to estimate their fluorescence quantum yields. The singlet oxygen generation abilities were also examined to investigate their photosensitizer properties.


2017 ◽  
Vol 21 (07n08) ◽  
pp. 547-554 ◽  
Author(s):  
Asuman Dakoğlu Gülmez ◽  
Meltem Göksel ◽  
Mahmut Durmuş

Silicon (IV) phthalocyanines bearing one or two biotin groups on the axially positions were synthesized, and these novel phthalocyanines were characterized by elemental analysis and standard spectroscopic techniques such as FT-IR, [Formula: see text]H NMR, UV-vis and MALDI-TOF. The synthesized compounds are the first examples of axially biotin substituted silicon (IV) phthalocyanines. These phthalocyanines were designed as targeting photosensitizers for the treatment of cancer by photodynamic therapy (PDT) technique. The phthalocyanine ring was selected for its photosensitizer ability and the biotin group was selected as a targeting agent for increasing accumulation of these photosensitizers in tumor cells. The photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen generation) properties of the target silicon(IV) phthalocyanines were investigated in DMSO. The photosensitizing efficiency of the studied phthalocyanines was tested against human cervical cancer (HeLa) cells at different photosensitizer concentrations. Both axially mono- and bis-biotin substituted silicon(IV) phthalocyanines present high photocytotoxicity against HeLa cancer cells with the cell survival degree ranging from 13% to 50%. The photosensitivity and the intensity of damage were found to be directly related to the concentration of the used photosensitizers. According to the obtained results, both silicon(IV) phthalocyanine derivatives could be promising as photosensitizers for treatment of cancer by PDT technique.


2016 ◽  
Vol 20 (06) ◽  
pp. 708-718 ◽  
Author(s):  
Meltem Göksel ◽  
Ibrahim F. Sengul ◽  
Hakan Kandemir ◽  
Mahmut Durmuş

Tetra and octa substituted novel zinc(II) phthalocyanines (3a and 5a) bearing carbazole groups were synthesized by cyclotetramerization of respective phthalonitrile derivatives (3 and 5). The zinc(II) phthalocyanines (3a and 5a) were converted into the water-soluble quaternized derivatives (3b and 5b) by utilizing dimethylsulphate as quaternizing agent. The synthesized novel compounds were confirmed thruogh FT-IR, UV-vis and MALDI-TOF mass spectroscopic data and elemental analysis as well. The photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen generation) properties of new phthalocyanines were determined in dimethylsulfoxide (DMSO). The photophysical and photochemical results were compared according to the number of the carbazole groups on the phthalocyanine core. Additionaly, in vitro photocytotoxicity of the targeted compounds were examined against to hepato cellular carcinoma (HuH-7) cancer cell line for determination of their photosensitizing ability.


2012 ◽  
Vol 16 (07n08) ◽  
pp. 845-854 ◽  
Author(s):  
Göknur Yaşa ◽  
Ali Erdoğmuş ◽  
Ahmet Lütfi Uğur ◽  
M. Kasım Şener ◽  
Ulvi Avcıata ◽  
...  

The synthesis, photophysical and photochemical properties of nonperipherally (α) mercaptoquinoline substituted Zn(II) , TiO(IV) and Mg(II) and quaternized Zn(II) phthalocyanines are described for the first time. These complexes (2 to 5) and their precursor are characterized by elemental analysis, FT-IR, 1H NMR, electronic spectroscopy as well as mass spectroscopy. Complexes 2, 4 and 5 have good solubility in organic solvents such as CHCl3 , DCM, DMSO, DMF, THF and toluene and are not aggregated in all solvents within a wide concentration range. Complex 3 showed very good solubility in water as well as DMSO and DMF. General trends are described for singlet oxygen, photodegradation and fluorescence quantum yields of these complexes in DMSO and DMF. While complex 2 has higher singlet oxygen and fluorescence quantum yields than 3, 4 and 5, complex 4 has higher fluorescence quantum yields in DMF and DMSO than 2, 3 and 5. The effect of the solvents and metal on the photophysical and photochemical parameters of the metallophthalocyanines are also reported.


2015 ◽  
Vol 19 (10) ◽  
pp. 1114-1122 ◽  
Author(s):  
Esra Nur Kaya ◽  
Mahmut Durmuş ◽  
Mustafa Bulut

The novel zinc(II) phthalocyanine complexes bearing tetra or octa-[7-oxy-3-(3′,4′,5′-trimethoxyphenyl)coumarin] moieties were synthesized for the first time in this study. These phthalocyanines were characterized by different spectroscopic methods such as FT-IR, 1H NMR, electronic absorption spectra, MALDI-TOF mass and elemental analyses as well. The photochemical properties such as singlet oxygen generation, photostability and photophysical properties such as fluorescence quantum yields and lifetimes were investigated in [Formula: see text],[Formula: see text]-dimethylformamide (DMF) solutions. The effect of the structure (the position and number of the coumarin groups on phthalocyanine framework) of novel phthalocyanines on these properties was also determined in this study.


2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Anabela Sousa Oliveira ◽  
Dumitru Licsandru ◽  
Rica Boscencu ◽  
Radu Socoteanu ◽  
Veronica Nacea ◽  
...  

This paper deals with a series of new unsymmetrically substituted mesoporphyrins: 5-(2-hydroxyphenyl)-10,15,20-tris-phenyl-21,23-H-porphyrin (TPPOHO), 5-(3-hydroxyphenyl)-10,15,20-tris-phenyl-21,23-H-porphyrin (TPPOHM), 5-(4-hydroxyphenyl)-10,15,20-tris-phenyl-21,23-H-porphyrin (TPPOHP), 5-(2-hydroxyphenyl)-10,15,20-tris-butyl-21,23-H-porphyrin (TBPOHO), and their parent nonsubstituted compounds, respectively, 5,10,15,20-tetrakis-phenyl-21,23-H-porphyrin (TPP) and 5,10,15,20-tetrakis-butyl-21,23-H-porphyrin (TBP). Several photophysical studies were carried out to access the influence of the unsymmetrical substitution at the porphyrinic macrocycle on porthyrin's photophysical properties, especially porthyrin's efficiency as singlet oxygen sensitizers. The quantum yields of singlet oxygen generation were determined in benzene (ΦΔ(TPP) = 0.66 ± 0.05;ΦΔ(TPPOHO) = 0.69 ± 0.04;ΦΔ(TPPOHM) = 0.62 ± 0.04;ΦΔ(TPPOHP) = 0.73 ± 0.03;ΦΔ(TBP) = 0.76 ± 0.03;ΦΔ(TBPOHO) = 0.73 ± 0.02) using the 5,10,15,20-tetraphenyl-21,23-H-porphine (ΦΔ(TPP) = 0.66) and Phenazine (ΦΔ(Phz) = 0.83) as reference compounds. Their fluorescence quantum yields were found to be (Φf(TPPOHO) = 0.10 ± 0.04;Φf(TPPOHM) = 0.09 ± 0.03;Φf(TPPOHP) = 0.13 ± 0.02;Φf(TBP) = 0.08 ± 0.03 andΦf(TBPOHO) = 0.08 ± 0.02 using 5,10,15,20-tetraphenyl-21,23-H-porphine as referenceΦf(TPP) = 0.13). Singlet state lifetimes were also determined in the same solvent. All the porphyrins presented very similar fluorescence lifetimes (mean values ofτS(withO2, air equilibrated) = 9.6 ± 0.3 nanoseconds and (withoutO2, argon purged) = 10.1 ± 0.6 nanoseconds, resp.). The phosphorescence emission was found to be negligible for this series of unsymmetrically substituted mesoporphyrins, but an E-type, thermally activated, delayed fluorescence process was proved to occur at room temperature.


2018 ◽  
Vol 22 (01n03) ◽  
pp. 46-55 ◽  
Author(s):  
İlke Gürol ◽  
Gülay Gümüş ◽  
Deniz Kutlu Tarakci ◽  
Ömer Güngör ◽  
Mahmut Durmuş ◽  
...  

The synthesis and characterization of novel zinc(II) (1a–4a) and oxo-titanium(IV) (1b–4b) phthalocyanine derivatives bearing 1H,1H-nona?uoro-3,6-dioxaheptan-1-ol groups are described for the first time. These phthalocyanines (1a–4a and 1b–4b) were characterized by elemental analysis and different spectroscopic techniques such as UV-vis, [Formula: see text]H NMR, FTIR and mass. Furthermore, the photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen generation and photodegradation) properties of these phthalocyanines were investigated in tetrahydrofuran (THF) solution. The influence of the number of the substituted groups (tetra or octa), position of the substituents (peripheral or non-peripheral) and central metal atom (zinc or titanium) on the photophysical and photochemical properties of these phthalocyanines were evaluated.


Sign in / Sign up

Export Citation Format

Share Document