good solubility
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 67)

H-INDEX

13
(FIVE YEARS 6)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 261
Author(s):  
Shih-Hsuan Chen ◽  
Huai-Sheng Chin ◽  
Yu-Ruei Kung

A new dietherpyrene-cored diamine monomer, namely, 4,5-bis(4-aminophenoxy)pyrene, was successful synthesized and formed a series of electroactive polyamides with an aryloxy linkage in a polymer main chain and bearing pyrene chromophore as a pendent group using conventional one-pot polycondensation reactions with commercial aromatic/aliphatic dicarboxylic acids. The resulting polyamides exhibited good solubility in polar organic solvents and, further, can be made into transparent films. They had appropriate levels of thermal stability with moderately high glass-transition values. The dilute NMP solutions of these polyamides exhibited pyrene characteristic fluorescence and also showed a remarkable additional excimer emission peak centered at 475 nm. Electrochemical studies of these polymer films showed that these polyamides have both p- and n-dopable states as a result of the formation of radical cations and anions of the electroactive pyrene moieties.


2021 ◽  
pp. 088532822110504
Author(s):  
Faiza Sajjad ◽  
Yiping Han ◽  
Leilei Bao ◽  
Yijia Yan ◽  
Donal O shea ◽  
...  

Photodynamic therapy (PDT) is a promising new treatment for cancer; however, the hydrophobic interactions and poor solubility in water of photosensitizers limit the use in clinic. Nanoparticles especially carbon dots have attracted the attention of the world’s scientists because of their unique properties such as good solubility and biocompatibility. In this paper, we integrated carbon dots with different porphyrins to improve the properties of porphyrins and evaluated their efficacy as PDT drugs. The spectroscopic characteristics of porphyrins nano-conjugates were studied. Singlet oxygen generation rate and the light- and dark-induced toxicity of the conjugates were studied. Our results showed that the covalent interaction between CDs and porphyrins has improved the biocompatibility. The synthesized conjugates also inherit the pH sensitivity of the carbon dots, while the conjugation also decreases the hemolysis ratio making them a promising candidate for PDT. The incorporation of carbon dots into porphyrins improved their biocompatibility by reducing toxicity.


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Mokhtar Dabbour ◽  
Rokkaya Sami ◽  
Benjamin K. Mintah ◽  
Ronghai He ◽  
Hafida Wahia ◽  
...  

The influence of freeze and convection (at 40 and 50 °C) drying on the physical, functional, and rheological attributes of sunflower protein (SP) and its hydrolysate (SPH) was investigated. Compared with convectively-dried samples, the lightness, turbidity, bulk density, and particle size values of the freeze-dried SP and SPH were substantially higher, but the browning index was lower (p < 0.05). Additionally, freeze-dried samples exhibited good solubility and foaming characteristics, whereas lower emulsion properties with the most pH values were observed. Furthermore, SPHs possessed higher solubility as well as foamability over SPs under varying pH values (2.0–10.0), whilst reduction in the emulsion activity index was clearly observed (p < 0.05). Convectively-dried powders exhibited greater viscosity and consistency coefficient; and significantly lower flow behavior index of dispersions, relative to the respective freeze-dried preparations, indicating that dehydration methods influenced the flow behavior of the investigated samples. From a molecular weight analysis, convectively-dried samples at various temperatures were characterized with high proportion of small-sized particles at ≤1 kDa fractions over the respective powders obtained by freeze drying. The observations made, thus, would benefit food processors and manufacturers in electing better dehydration technique based on the desired traits of SP and SPH powders for successful application in food product formulations.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4036
Author(s):  
Syed Sarim Imam ◽  
Sultan Alshehri ◽  
Mohammed M. Ghoneim ◽  
Ameeduzzafar Zafar ◽  
Omar Awad Alsaidan ◽  
...  

The excellent therapeutic potential of a variety of phytochemicals in different diseases has been proven by extensive studies throughout history. However, most phytochemicals are characterized by a high molecular weight, poor aqueous solubility, limited gastrointestinal permeability, extensive pre-systemic metabolism, and poor stability in the harsh gastrointestinal milieu. Therefore, loading of these phytochemicals in biodegradable and biocompatible nanoparticles (NPs) might be an effective approach to improve their bioactivity. Different nanocarrier systems have been developed in recent decades to deliver phytochemicals. Among them, NPs based on chitosan (CS) (CS-NPs), a mucoadhesive, non-toxic, and biodegradable polysaccharide, are considered the best nanoplatform for the oral delivery of phytochemicals. This review highlights the oral delivery of natural products, i.e., phytochemicals, encapsulated in NPs prepared from a natural polymer, i.e., CS, for improved bioavailability and bioactivity. The unique properties of CS for oral delivery such as its mucoadhesiveness, non-toxicity, excellent stability in the harsh environment of the GIT, good solubility in slightly acidic and alkaline conditions, and ability to enhance intestinal permeability are discussed first, and then the outcomes of various phytochemical-loaded CS-NPs after oral administration are discussed in detail. Furthermore, different challenges associated with the oral delivery of phytochemicals with CS-NPs and future directions are also discussed.


Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 637
Author(s):  
Natalya N. Besednova ◽  
Tatyana S. Zaporozhets ◽  
Boris G. Andryukov ◽  
Sergey P. Kryzhanovsky ◽  
Svetlana P. Ermakova ◽  
...  

This review presents materials characterizing sulfated polysaccharides (SPS) of marine hydrobionts (algae and invertebrates) as potential means for the prevention and treatment of protozoa and helminthiasis. The authors have summarized the literature on the pathogenetic targets of protozoa on the host cells and on the antiparasitic potential of polysaccharides from red, brown and green algae as well as certain marine invertebrates. Information about the mechanisms of action of these unique compounds in diseases caused by protozoa has also been summarized. SPS is distinguished by high antiparasitic activity, good solubility and an almost complete absence of toxicity. In the long term, this allows for the consideration of these compounds as effective and attractive candidates on which to base drugs, biologically active food additives and functional food products with antiparasitic activity.


2021 ◽  
pp. 095400832110550
Author(s):  
Aslam B Tamboli ◽  
Shivaji D Ghodke ◽  
Arati V Diwate ◽  
Makrand D Joshi ◽  
Vijay P Ubale ◽  
...  

New aromatic poly(ether ether ketone imide)s, [PEEKimide]s, were synthesized successfully from 1,3-bis-4′-(4″-aminophenoxy benzoyl) benzene and various commercially available aromatic dianhydrides, such as pyromellitic dianhydride (PMDA), 3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA), 3,3′,4,4′-biphenyl tetracarboxylic dianhydride (BPDA), 4,4′-oxydiphthalic anhydride (OPDA) and 4,4′-(hexafluro isoproylidene) diphthalic anhydride (HFDA), by two step polycondensation method. These PEEKimides were characterized by FT-IR, solubility in organic solvents, inherent viscosity, DSC, TGA and WXRD. Inherent viscosities of the precursor poly(ether ether ketone amic acid)s were in the range of 0.23–0.40 dl/g in DMF, indicating formation of moderate to high molecular weights. These poly(ether ether ketone imide)s showed good solubility in polar aprotic solvents such as N,N-dimethylacetamide (DMAc), N-methyl 2-pyrrolidone (NMP), N,N-dimethylformamide (DMF) and dimethyl sulphoxide (DMSO) and had glass transition temperatures in the range 245–279°C. Poly(ether ether ketone imide)s showed no weight loss below 280°C; temperatures for 10% weight loss (T10) were in the range of 406–483°C and char yields at 800°C were 17–34%, indicating their good thermal stability. All these poly(ether ether ketone imide)s were amorphous in nature, as per patterns of WXRD which exhibited diffuse broad halos at (2θ = 10–30°) and amorphous nature was reflected in polymer’s good solubility in common organic solvents.


2021 ◽  
Author(s):  
Xiaohong Cheng ◽  
Shuang Li ◽  
Mengyun Gong ◽  
Song Wang ◽  
Wangnan Li

Abstract In this work, dual-emissive ratiometric fluorescent system was constructed by the introduction of an ideal internal reference. By virtue of its unique alkalinity, N 2 H 4 could undergo a hydrazinolysis reaction with the ester group of F1 , inducing remarkable fluorescence enhancement while the blue fluorescence of the internal reference DPA remained constant. Consequently, the fluorescence intensity ratios (I 540 /I 440 ) were proportional to the concentrations of N 2 H 4 , which was beneficial for the exactly quantitative detection. The skillful strategy granted the sensing system advantages such as relative good solubility in aqueous media, easy-to-design, simple synthesis, large emission shift, good ratiometric response, as well as the successful application in real water samples and cell imaging.


2021 ◽  
pp. 095400832110422
Author(s):  
Shajie Luo ◽  
Fajian Ren ◽  
Jiangang Dai ◽  
Yan Chen ◽  
Zhongzhu Yang

Two kinds of novel poly(arylene ether nitrile)s (CPDP-DCBN and CHDP-DCBN) containing pendant aliphtatic ring were synthesized by 4,4′-cyclopentane-1,1′-diyldiphenol (CPDP) or 4,4′-cyclohexane-1,1′-diyldiphenol (CHDP) and 2,6-dichlorobenzonitrile (DCBN) in this work. The inherent viscosities of poly(arylene ether nitrile)s (PENs) were in the range of 0.701–0.806 dL g−1. The polymers showed high glass transition temperatures ( T g) of 185.4–196.4°C and weight-loss temperatures ( T5%) of 447.8–454.3°C. The obtained CPDP-DCBN and CHDP-DCBN could be hot pressed into the films, which showed the tensile strengths of 82.6 MPa and 86.8 MPa, respectively. And the storage modulus of CPDP-DCBN and CHDP-DCBN were about 1.0 GPa and 1.5 GPa at 150°C, respectively. Additionally, the PENs could be dissolved in many solutions at room temperature, such as NMP and concentrated H2SO4, indicating that they had good solubility; they can be processed by the solution method. Meanwhile, the optical transmittance of CPDP-DCBN was 78.1% at 450 nm; it has potential to be applied to the heat-resistant optical film.


2021 ◽  
Vol 66 (7-8) ◽  
pp. 50-66
Author(s):  
N. N. Besednova ◽  
T. N. Zvyagintseva ◽  
B. G. Andriukov ◽  
T. S. Zaporozhets ◽  
T. A. Kuznetsova ◽  
...  

The review presents materials describing the seaweed-derived sulfated polysaccharides (SPS) as potential means for prevention and treatment of viral diseases of the respiratory tract, mainly influenza and COVID-19. The literature materials on the pathogenetic targets of influenza viruses and SARS-CoV-2, on the antiviral potential of SPS derived from red, brown and green algae, as well as on the mechanisms of antiviral action of these unique compounds are summarized. Seaweed SPS are characterized by high antiviral activity, good solubility, and almost complete absence of toxicity. Pathogens of respiratory infections do not form resistance under the SPS influence. The abovementioned facts allow us to consider these compounds as promising candidates for the creation of medicines, dietary supplements, and functional food products with antiviral and, above all, anti-influenza and anti-coronavirus activity on their basis in the future.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3385
Author(s):  
Kseniia N. Bardakova ◽  
Yaroslav V. Faletrov ◽  
Evgenii O. Epifanov ◽  
Nikita V. Minaev ◽  
Vladislav S. Kaplin ◽  
...  

A hydrophobic derivative of ciprofloxacin, hexanoylated ciprofloxacin (CPF-hex), has been used as a photoinitiator (PI) for two-photon polymerization (2PP) for the first time. We present, here, the synthesis of CPF-hex and its application for 2PP of methacrylate-terminated star-shaped poly (D,L-lactide), as well a systematic study on the optical, physicochemical and mechanical properties of the photocurable resin and prepared three-dimensional scaffolds. CPF-hex exhibited good solubility in the photocurable resin, high absorption at the two-photon wavelength and a low fluorescence quantum yield = 0.079. Structuring tests showed a relatively broad processing window and revealed the efficiency of CPF-hex as a 2PP PI. The prepared three-dimensional scaffolds showed good thermal stability; thermal decomposition was observed only at 314 °C. In addition, they demonstrated an increase in Young’s modulus after the UV post-curing (from 336 ± 79 MPa to 564 ± 183 MPa, which is close to those of a cancellous (trabecular) bone). Moreover, using CPF-hex as a 2PP PI did not compromise the scaffolds’ low cytotoxicity, thus they are suitable for potential application in bone tissue regeneration.


Sign in / Sign up

Export Citation Format

Share Document