Composite Fermions in Braid Group Terms

2010 ◽  
Vol 17 (01) ◽  
pp. 53-71
Author(s):  
J. Jacak ◽  
I. Jóźwiak ◽  
L. Jacak

A new implementation of composite fermions, and more generally — of composite anyons is formulated, exploiting one-dimensional unitary representations of appropriately constructed subgroups of the full braid group, in accordance with a cyclotron motion of 2D charged particle systems. The nature of hypothetical fluxes attached to the Jain's composite fermions is explained via additional cyclotron trajectory loops consistently with braid subgroup structure. It is demonstrated that composite fermions and composite anyons are rightful 2D particles (not an auxiliary construction) associated with cyclotron braid subgroups instead of the full braid group, which may open a new opportunity for non-Abelian composite anyons for quantum information processing applications.

2009 ◽  
Vol 07 (06) ◽  
pp. 1255-1267
Author(s):  
JIAN LI ◽  
JIAN ZOU ◽  
BIN SHAO

We consider a one-dimensional array of superconducting transmission line resonators (TLRs). The TLRs are coupled by current-biased Josephson junctions, which act as tunable couplers between each two nearest TLRs, and a superconducting qubit is fabricated in the center of each TLR. We show that some important quantum information processing, such as quantum state transfer and preparation of remote entanglement, can be achieved in this system, and we also propose a scheme for generating the W-class states.


2001 ◽  
Author(s):  
David P. DiVincenzo ◽  
Charles H. Bennett

2011 ◽  
Author(s):  
David G. Cory ◽  
Chandrasekhar Ramanathan ◽  
Raymond Laflamme ◽  
Joseph V. Emerson ◽  
Jonathan Baugh

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie Su ◽  
Xuchao Guo ◽  
Chengqi Liu ◽  
Shuhan Lu ◽  
Lin Li

AbstractQuantum image representation (QIR) is a necessary part of quantum image processing (QIP) and plays an important role in quantum information processing. To address the problems that NCQI cannot handle images with inconsistent horizontal and vertical position sizes and multi-channel image processing, an improved color digital image quantum representation (INCQI) model based on NCQI is proposed in this paper. The INCQI model can process color images and facilitate multi-channel quantum image transformations and transparency information processing of images using auxiliary quantum bits. In addition, the quantum image control circuit was designed based on INCQI. And quantum image preparation experiments were conducted on IBM Quantum Experience (IBMQ) to verify the feasibility and effectiveness of INCQI quantum image preparation. The prepared image information was obtained by quantum measurement in the experiment, and the visualization of quantum information was successfully realized. The research in this paper has some reference value for the research related to QIP.


Sign in / Sign up

Export Citation Format

Share Document