Quadratic Convex Reformulation for Solving Task Assignment Problem with Continuous Hopfield Network

Author(s):  
Youssef Hami ◽  
Chakir Loqman

This research is an optimal allocation of tasks to processors in order to minimize the total costs of execution and communication. This problem is called the Task Assignment Problem (TAP) with nonuniform communication costs. To solve the latter, the first step concerns the formulation of the problem by an equivalent zero-one quadratic program with a convex objective function using a convexification technique, based on the smallest eigenvalue. The second step concerns the application of the Continuous Hopfield Network (CHN) to solve the obtained problem. The calculation results are presented for the instances from the literature, compared to solutions obtained both the CPLEX solver and by the heuristic genetic algorithm, and show an improvement in the results obtained by applying only the CHN algorithm. We can see that the proposed approach evaluates the efficiency of the theoretical results and achieves the optimal solutions in a short calculation time.

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 74542-74557 ◽  
Author(s):  
Moning Zhu ◽  
Xiaoxia Du ◽  
Xuehua Zhang ◽  
He Luo ◽  
Guoqiang Wang

Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 862
Author(s):  
Ling Xu ◽  
Jianzhong Qiao ◽  
Shukuan Lin ◽  
Xiaowei Wang

As a type of distributed computing, volunteer computing (VC) has provided unlimited computing capacity at a low cost in recent decades. The architecture of most volunteer computing platforms (VCPs) is a master–worker model, which defines a master–slave relationship. Therefore, VCPs can be considered asymmetric multiprocessing systems (AMSs). As AMSs, VCPs are very promising for providing computing services for users. Users can submit tasks with deadline constraints to the VCPs. If the tasks are completed within their deadlines, VCPs will obtain the benefits. For this application scenario, this paper proposes a new task assignment problem with the maximum benefits in VCPs for the first time. To address the problem, we first proposed a list-based task assignment (LTA) strategy, and we proved that the LTA strategy could complete the task with a deadline constraint as soon as possible. Then, based on the LTA strategy, we proposed a maximum benefit scheduling (MBS) algorithm, which aimed at maximizing the benefits of VCPs. The MBS algorithm determined the acceptable tasks using a pruning strategy. Finally, the experiment results show that our proposed algorithm is more effective than current algorithms in the aspects of benefits, task acceptance rate and task completion rate.


2012 ◽  
Vol 4 (3) ◽  
pp. 153-169 ◽  
Author(s):  
Ayed Salman ◽  
Imtiaz Ahmad ◽  
Hanaa AL-Rushood ◽  
Suha Hamdan

Sign in / Sign up

Export Citation Format

Share Document