scholarly journals Cooperative Multiple Task Assignment Problem With Target Precedence Constraints Using a Waitable Path Coordination and Modified Genetic Algorithm

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 39392-39410
Author(s):  
Yiyang Zhao ◽  
Deyun Zhou ◽  
Haiyin Piao ◽  
Zhen Yang ◽  
Rui Hou ◽  
...  
Author(s):  
Guangtong Xu ◽  
Teng Long ◽  
Zhu Wang ◽  
Li Liu

This paper presents a modified genetic algorithm using target-bundle-based encoding and tailored genetic operators to effectively tackle cooperative multiple task assignment problems of heterogeneous unmanned aerial vehicles. In the cooperative multiple task assignment problem, multiple tasks including reconnaissance, attack, and verification have to be sequentially performed on each target (e.g. ground control stations, tanks, etc.) by one or multiple unmanned aerial vehicles. Due to the precedence constraints of different tasks, a singular task-execution order may cause deadlock situations, i.e. one or multiple unmanned aerial vehicles being trapped in infinite waiting loops. To address this problem, a target-bundled genetic algorithm is proposed. As a key element of target-bundled genetic algorithm, target-bundle-based encoding is derived to fix multiple tasks on each target as a target-bundle. And individuals are generated by fixing the task-execution order on each target-bundle subject to task precedence constraints. During the evolution process, bundle-exchange crossover and multi-type mutation operators are customized to generate deadlock-free offspring. Besides, the time coordination method is developed to ensure that task-execution time satisfies task precedence constraints. The comparison results on numerical simulations demonstrate that target-bundled genetic algorithm outperforms particle swarm optimization and random search methods in terms of optimality and efficiency.


2021 ◽  
pp. 002029402110022
Author(s):  
Song Han ◽  
Chenchen Fan ◽  
Xinbin Li ◽  
Xi Luo ◽  
Zhixin Liu

This study deals with the task assignment problem of heterogeneous unmanned aerial vehicle (UAV) system with the limited resources and task priority constraints. The optimization model which comprehensively considers the resource consumption, task completion effect, and workload balance is formulated. Then, a concept of fuzzy elite degree is proposed to optimize and balance the transmission of good genes and the variation strength of population during the operations of algorithm. Based on the concept, we propose the fuzzy elite strategy genetic algorithm (FESGA) to efficiently solve the complex task assignment problem. In the proposed algorithm, two unlock methods are presented to solve the deadlock problem in the random optimization process; a sudden threat countermeasure (STC) mechanism is presented to help the algorithm quickly respond to the change of task environment caused by sudden threats. The simulation results demonstrate the superiority of the proposed algorithm. Meanwhile, the effectiveness and feasibility of the algorithm in workload balance and task priority constraints are verified.


Author(s):  
Youssef Hami ◽  
Chakir Loqman

This research is an optimal allocation of tasks to processors in order to minimize the total costs of execution and communication. This problem is called the Task Assignment Problem (TAP) with nonuniform communication costs. To solve the latter, the first step concerns the formulation of the problem by an equivalent zero-one quadratic program with a convex objective function using a convexification technique, based on the smallest eigenvalue. The second step concerns the application of the Continuous Hopfield Network (CHN) to solve the obtained problem. The calculation results are presented for the instances from the literature, compared to solutions obtained both the CPLEX solver and by the heuristic genetic algorithm, and show an improvement in the results obtained by applying only the CHN algorithm. We can see that the proposed approach evaluates the efficiency of the theoretical results and achieves the optimal solutions in a short calculation time.


Sign in / Sign up

Export Citation Format

Share Document