Quantale-Valued Uniformizations of Quantale-Valued Generalizations of Approach Groups

2019 ◽  
Vol 15 (03) ◽  
pp. 517-538
Author(s):  
T. M. G. Ahsanullah ◽  
Gunther Jäger

We introduce the categories of quantale-valued approach uniform spaces and quantale-valued uniform gauge spaces, and prove that they are topological categories. We first show that the category of quantale-valued uniform gauge spaces is a full bireflective subcategory of the category of quantale-valued approach uniform spaces and; second, we prove that only under strong restrictions on the quantale these two categories are isomorphic. Besides presenting embeddings of the category of quantale-valued metric spaces into the categories of quantale-valued approach uniform spaces as well as quantale-valued uniform gauge spaces, we show that every quantale-valued approach system group and quantale-valued gauge group has a natural underlying quantale-valued approach uniform space, respectively, a quantale-valued uniform gauge space.

Author(s):  
R. Lowen ◽  
A. K. Srivastava ◽  
p. Wuyts

It is shown that the category of non-Archimedean metric spaces with 1-Lipschitz maps can be embedded as a coreflective non-bireflective subcategory in the category of fuzzy uniform spaces. Consequential characterizations of topological and uniform properties are derived.


1956 ◽  
Vol 52 (3) ◽  
pp. 399-405 ◽  
Author(s):  
F. Rhodes

Isomorphisms are, in many ways, the generalizations of isometrics to uniform spaces. Yet some theorems on isometries of metric spaces only generalize to uniform spaces in terms of more restricted transformations of the uniform space. In § 1, in the course of a discussion of a theorem on transitive groups of automorphisms, we define such a transformation and call it an isobasism. It appears that in many respects isobasisms, rather than isomorphisms, are the generalizations of isometries to uniform spaces. The results of Freudenthal and Hurewicz (7) on contractions, expansions and isometries of totally bounded metric spaces are generalized, in § 2, to contractions, expansions and isobasisms of totally bounded uniform spaces. These results, together with generalizations of some theorems of Eilenberg (6) on compact groups of homeomorphisms of metric spaces which are obtained in §3, give a characterization of isobasisms. The language of Bourbaki (2,3,4) is used throughout this note.


1979 ◽  
Vol 20 (2) ◽  
pp. 179-186 ◽  
Author(s):  
P. Srivastava ◽  
S.C. Srivastava

Several fixed point theorems for nonexpansive self mappings in metric spaces and in uniform spaces are known. In this context the concept of orbital diameters in a metric space was introduced by Belluce and Kirk. The concept of normal structure was utilized earlier by Brodskiĭ and Mil'man. In the present paper, both these concepts have been extended to obtain definitions of β-orbital diameter and β-normal structure in a uniform space having β as base for the uniformity. The closed symmetric neighbourhoods of zero in a locally convex space determine a base β of a compatible uniformity. For 3-nonexpansive self mappings of a locally convex space, fixed point theorems have been obtained using the concepts of β-orbital diameter and β-normal structure. These theorems generalise certain theorems of Belluce and Kirk.


1961 ◽  
Vol 13 ◽  
pp. 657-663 ◽  
Author(s):  
Masahiko Atsuji

Recently several topologists have called attention to the uniform structures (in most cases, the coarsest ones) under which every continuous real function is uniformly continuous (let us call the structures the [coarsest] uc-structures), and some important results have been found which closely relate, explicitly or implicitly, to the uc-structures, such as in the vS of Hewitt (3) and in the e-complete space of Shirota (7). Under these circumstances it will be natural to pose, as Hitotumatu did (4), the problem: which are the uniform spaces with the uc-structures? In (1 ; 2), we characterized the metric spaces with such structures, and in this paper we shall give a solution to the problem in uniform spaces (§ 1), together with some of its applications to normal uniform spaces and to the products of metric spaces (§ 2). It is evident that every continuous real function on a uniform space is uniformly continuous if and only if the uniform structure of the space is finer than the uniform structure defined by all continuous real functions on the space.


2001 ◽  
Vol 37 (1-2) ◽  
pp. 169-184
Author(s):  
B. Windels

In 1930 Kuratowski introduced the measure of non-compactness for complete metric spaces in order to measure the discrepancy a set may have from being compact.Since then several variants and generalizations concerning quanti .cation of topological and uniform properties have been studied.The introduction of approach uniform spaces,establishes a unifying setting which allows for a canonical quanti .cation of uniform concepts,such as completeness,which is the subject of this article.


2003 ◽  
Vol 10 (2) ◽  
pp. 201-207
Author(s):  
V. Baladze
Keyword(s):  

Abstract In this paper theorems which give conditions for a uniform space to have an ARU-resolution are proved. In particular, a finitistic uniform space admits an ARU-resolution if and only if it has trivial uniform shape or it is an absolute uniform shape retract.


2004 ◽  
Vol 11 (4) ◽  
pp. 613-633
Author(s):  
V. Baladze ◽  
L. Turmanidze

Abstract Border homology and cohomology groups of pairs of uniform spaces are defined and studied. These groups give an intrinsic characterization of Čech type homology and cohomology groups of the remainder of a uniform space.


2020 ◽  
Vol 18 (1) ◽  
pp. 1478-1490
Author(s):  
Ankit Gupta ◽  
Abdulkareem Saleh Hamarsheh ◽  
Ratna Dev Sarma ◽  
Reny George

Abstract New families of uniformities are introduced on UC(X,Y) , the class of uniformly continuous mappings between X and Y, where (X,{\mathcal{U}}) and (Y,{\mathcal{V}}) are uniform spaces. Admissibility and splittingness are introduced and investigated for such uniformities. Net theory is developed to provide characterizations of admissibility and splittingness of these spaces. It is shown that the point-entourage uniform space is splitting while the entourage-entourage uniform space is admissible.


2021 ◽  
Vol 13 (2) ◽  
pp. 292-304
Author(s):  
Ali Barzanouni ◽  
Ekta Shah

Abstract We study the notion of expansive homeomorphisms on uniform spaces. It is shown that if there exists a topologically expansive homeomorphism on a uniform space, then the space is always a Hausdor space and hence a regular space. Further, we characterize orbit expansive homeomorphisms in terms of topologically expansive homeomorphisms and conclude that if there exist a topologically expansive homeomorphism on a compact uniform space then the space is always metrizable.


1986 ◽  
Vol 28 (1) ◽  
pp. 31-36 ◽  
Author(s):  
P. Fletcher ◽  
W. F. Lindgren

The notation and terminology of this paper coincide with that of reference [4], except that here the term, compactification, refers to a T1-space. It is known that a completely regular totally bounded Hausdorff quasi-uniform space (X, ) has a Hausdorff compactification if and only if contains a uniformity compatible with ℱ() [4, Theorem 3.47]. The use of regular filters by E. M. Alfsen and J. E. Fenstad [1] and O. Njåstad [5], suggests a construction of a compactification, which differs markedly from the construction obtained in [4]. We use this construction to show that a totally bounded T1 quasi-uniform space has a compactification if and only if it is point symmetric. While it is pleasant to have a characterization that obtains for all T1-spaces, the present construction has several further attributes. Unlike the compactification obtained in [4], the compactification given here preserves both total boundedness and uniform weight, and coincides with the uniform completion when the quasi-uniformity under consideration is a uniformity. Moreover, any quasi-uniformly continuous map from the underlying quasi-uniform space of the compactification onto any totally bounded compact T1-space has a quasi-uniformly continuous extension to the compactification. If is the Pervin quasi-uniformity of a T1-space X, the compactification we obtain is the Wallman compactification of (X, ℱ ()). It follows that our construction need not provide a Hausdorff compactification, even when such a compactification exists; but we obtain a sufficient condition in order that our compactification be a Hausdorff space and note that this condition is satisfied by all uniform spaces and all normal equinormal quasi-uniform spaces. Finally, we note that our construction is reminiscent of the completion obtained by Á. Császár for an arbitrary quasi-uniform space [2, Section 3]; in particular our Theorem 3.7 is comparable with the result of [2, Theorem 3.5].


Sign in / Sign up

Export Citation Format

Share Document