ON TWISTS OF THE FERMAT CUBIC x3 + y3 = 2

2014 ◽  
Vol 10 (01) ◽  
pp. 55-72
Author(s):  
TOMASZ JEDRZEJAK

We consider the Fermat elliptic curve E2 : x3 + y3 = 2 and prove (using descent methods) that its quadratic twists have rank zero for a positive proportion of squarefree integers with fixed number of prime divisors. We also prove similar result for rank zero cubic twists of this curve. Then we present detailed description of rank zero quadratic and cubic twists of E2 by primes and by products of two primes. We also consider twists of Jacobians of Fermat curves x5 + y5 = m and distribution of their root numbers.

1985 ◽  
Vol 8 (2) ◽  
pp. 283-302 ◽  
Author(s):  
Claudia A. Spiro

This paper is concerned with estimating the number of positive integers up to some bound (which tends to infinity), such that they have a fixed number of prime divisors, and lie in a given arithmetic progression. We obtain estimates which are uniform in the number of prime divisors, and at the same time, in the modulus of the arithmetic progression. These estimates take the form of a fixed but arbitrary number of main terms, followed by an error term.


2005 ◽  
Vol 117 (4) ◽  
pp. 341-352 ◽  
Author(s):  
Jörn Steuding ◽  
Annegret Weng

1988 ◽  
Vol 29 (1) ◽  
pp. 94-99 ◽  
Author(s):  
P.D.T.A Elliott ◽  
A Sárközy

2019 ◽  
Vol 7 ◽  
Author(s):  
DANIEL KRIZ ◽  
CHAO LI

Given an elliptic curve$E$over$\mathbb{Q}$, a celebrated conjecture of Goldfeld asserts that a positive proportion of its quadratic twists should have analytic rank 0 (respectively 1). We show that this conjecture holds whenever$E$has a rational 3-isogeny. We also prove the analogous result for the sextic twists of$j$-invariant 0 curves. For a more general elliptic curve$E$, we show that the number of quadratic twists of$E$up to twisting discriminant$X$of analytic rank 0 (respectively 1) is$\gg X/\log ^{5/6}X$, improving the current best general bound toward Goldfeld’s conjecture due to Ono–Skinner (respectively Perelli–Pomykala). To prove these results, we establish a congruence formula between$p$-adic logarithms of Heegner points and apply it in the special cases$p=3$and$p=2$to construct the desired twists explicitly. As a by-product, we also prove the corresponding$p$-part of the Birch and Swinnerton–Dyer conjecture for these explicit twists.


1992 ◽  
Vol 44 (6) ◽  
pp. 1121-1154 ◽  
Author(s):  
J. M. De Koninck ◽  
I. Kátai ◽  
A. Mercier

AbstractLet h: [0,1] → R be such that and define .In 1966, Erdős [8] proved that holds for almost all n, which by using a simple argument implies that in the case h(u) = u, for almost all n, He further obtained that, for every z > 0 and almost all n, and that where ϕ, ψ, are continuous distribution functions. Several other results concerning the normal growth of prime factors of integers were obtained by Galambos [10], [11] and by De Koninck and Galambos [6].Let χ = ﹛xm : w ∈ N﹜ be a sequence of real numbers such that limm→∞ xm = +∞. For each x ∈ χ let be a set of primes p ≤x. Denote by p(n) the smallest prime factor of n. In this paper, we investigate the number of prime divisors p of n, belonging to for which Th(n,p) > z. Given Δ < 1, we study the behaviour of the function We also investigate the two functions , where, in each case, h belongs to a large class of functions.


2011 ◽  
Vol 202 ◽  
pp. 15-22 ◽  
Author(s):  
Michael Coons ◽  
Sander R. Dahmen

AbstractLet Ω(n) denote the number of prime divisors of n counting multiplicity. One can show that for any positive integer m and all j = 0,1,…,m – 1, we havewith α = 1. Building on work of Kubota and Yoshida, we show that for m > 2 and any j = 0,1,…,m – 1, the error term is not o(xα) for any α < 1.


Sign in / Sign up

Export Citation Format

Share Document