Algebraic functional equation for Hida family

2014 ◽  
Vol 10 (07) ◽  
pp. 1649-1674
Author(s):  
Somnath Jha ◽  
Aprameyo Pal

We prove a functional equation for the characteristic ideal of the "big" Selmer group 𝒳(𝒯ℱ/F cyc ) associated to an ordinary Hida family of elliptic modular forms over the cyclotomic ℤp extension of a general number field F, under the assumption that there is at least one arithmetic specialization whose Selmer group is torsion over its Iwasawa algebra. For a general number field, the two-variable cyclotomic Iwasawa main conjecture for ordinary Hida family is not proved and this can be thought of as an evidence to the validity of the Iwasawa main conjecture. The central idea of the proof is to prove a variant of the result of Perrin-Riou [Groupes de Selmer et accouplements; cas particulier des courbes elliptiques, Doc. Math.2003 (2003) 725–760, Extra Volume: Kazuya Kato's fiftieth birthday] by constructing a generalized pairing on the individual Selmer groups corresponding to the arithmetic points and make use of the appropriate specialization techniques of Ochiai [Euler system for Galois deformations, Ann. Inst. Fourier (Grenoble)55(1) (2005) 113–146].

2015 ◽  
Vol 11 (04) ◽  
pp. 1233-1257
Author(s):  
Tibor Backhausz ◽  
Gergely Zábrádi

Let E be an elliptic curve — defined over a number field K — without complex multiplication and with good ordinary reduction at all the primes above a rational prime p ≥ 5. We construct a pairing on the dual p∞-Selmer group of E over any strongly admissible p-adic Lie extension K∞/K under the assumption that it is a torsion module over the Iwasawa algebra of the Galois group G = Gal(K∞/K). Under some mild additional hypotheses, this gives an algebraic functional equation of the conjectured p-adic L-function. As an application, we construct completely faithful Selmer groups in case the p-adic Lie extension is obtained by adjoining the p-power division points of another non-CM elliptic curve A.


2014 ◽  
Vol 10 (03) ◽  
pp. 705-735
Author(s):  
APRAMEYO PAL

In this paper we apply methods from the number field case of Perrin-Riou [20] and Zábrádi [32] in the function field setup. In ℤℓ- and GL2-cases (ℓ ≠ p), we prove algebraic functional equations of the Pontryagin dual of Selmer group which give further evidence of the main conjectures of Iwasawa theory. We also prove some parity conjectures in commutative and non-commutative cases. As a consequence, we also get results on the growth behavior of Selmer groups in commutative and non-commutative extension of function fields.


2018 ◽  
Vol 30 (2) ◽  
pp. 321-346
Author(s):  
Yara Elias ◽  
Carlos de Vera-Piquero

AbstractGiven a modular form{{f}}of even weight larger than two and an imaginary quadratic field{{K}}satisfying a relaxed Heegner hypothesis, we construct a collection of CM cycles on a Kuga–Sato variety over a suitable Shimura curve which gives rise to a system of Galois cohomology classes attached to{{f}}enjoying the compatibility properties of an Euler system. Then we use Kolyvagin’s method [21], as adapted by Nekovář [28] to higher weight modular forms, to bound the size of the relevant Selmer group associated to{{f}}and{{K}}and prove the finiteness of the (primary part) of the Shafarevich–Tate group, provided that a suitable cohomology class does not vanish.


2016 ◽  
Vol 13 (06) ◽  
pp. 1443-1455 ◽  
Author(s):  
Chan-Ho Kim ◽  
Robert Pollack ◽  
Tom Weston

We establish the freeness of certain anticyclotomic Selmer groups of modular forms. The freeness of these Selmer groups plays a key role in the Euler system arguments introduced by Bertolini and Darmon in their work on the anticyclotomic main conjecture for modular forms. In particular, our result fills some implicit gaps which appeared in generalizations of the Bertolini-Darmon result to the case where the associated residual representation is not minimally ramified. The removal of such a minimal ramification hypothesis is essential for applications involving congruences of modular forms.


Author(s):  
Kâzım Büyükboduk ◽  
Antonio Lei

AbstractThis article is a continuation of our previous work [7] on the Iwasawa theory of an elliptic modular form over an imaginary quadratic field $K$, where the modular form in question was assumed to be ordinary at a fixed odd prime $p$. We formulate integral Iwasawa main conjectures at non-ordinary primes $p$ for suitable twists of the base change of a newform $f$ to an imaginary quadratic field $K$ where $p$ splits, over the cyclotomic ${\mathbb{Z}}_p$-extension, the anticyclotomic ${\mathbb{Z}}_p$-extensions (in both the definite and the indefinite cases) as well as the ${\mathbb{Z}}_p^2$-extension of $K$. In order to do so, we define Kobayashi–Sprung-style signed Coleman maps, which we use to introduce doubly signed Selmer groups. In the same spirit, we construct signed (integral) Beilinson–Flach elements (out of the collection of unbounded Beilinson–Flach elements of Loeffler–Zerbes), which we use to define doubly signed $p$-adic $L$-functions. The main conjecture then relates these two sets of objects. Furthermore, we show that the integral Beilinson–Flach elements form a locally restricted Euler system, which in turn allow us to deduce (under certain technical assumptions) one inclusion in each one of the four main conjectures we formulate here (which may be turned into equalities in favorable circumstances).


2015 ◽  
Vol 3 ◽  
Author(s):  
XIN WAN

Following the ideas and methods of a recent work of Skinner and Urban, we prove the one divisibility of the Iwasawa main conjecture for nearly ordinary Hilbert modular forms under certain local hypotheses. As a consequence, we prove that for a Hilbert modular form of parallel weight, trivial character, and good ordinary reduction at all primes dividing$p$, if the central critical$L$-value is zero then the$p$-adic Selmer group of it has rank at least one. We also prove that one of the local assumptions in the main result of Skinner and Urban can be removed by a base-change trick.


2004 ◽  
Vol 56 (1) ◽  
pp. 194-208
Author(s):  
A. Saikia

AbstractSuppose K is an imaginary quadratic field and E is an elliptic curve over a number field F with complex multiplication by the ring of integers in K. Let p be a rational prime that splits as in K. Let Epn denote the pn-division points on E. Assume that F(Epn) is abelian over K for all n ≥ 0. This paper proves that the Pontrjagin dual of the -Selmer group of E over F(Ep∞) is a finitely generated free Λ-module, where Λ is the Iwasawa algebra of . It also gives a simple formula for the rank of the Pontrjagin dual as a Λ-module.


2011 ◽  
Vol 147 (3) ◽  
pp. 803-838 ◽  
Author(s):  
Antonio Lei

AbstractWe generalise works of Kobayashi to give a formulation of the Iwasawa main conjecture for modular forms at supersingular primes. In particular, we give analogous definitions of the plus and minus Coleman maps for normalised new forms of arbitrary weights and relate Pollack’s p-adic L-functions to the plus and minus Selmer groups. In addition, by generalising works of Pollack and Rubin on CM elliptic curves, we prove the ‘main conjecture’ for CM modular forms.


2012 ◽  
Vol 08 (04) ◽  
pp. 881-909 ◽  
Author(s):  
AHMED MATAR

This paper proves a control theorem for the p-primary Selmer group of an abelian variety with respect to extensions of the form: Maximal pro-p extension of a number field unramified outside a finite set of primes R which does not include any primes dividing p in which another finite set of primes S splits completely. When the Galois group of the extension is not p-adic analytic, the control theorem gives information about p-ranks of Selmer and Tate–Shafarevich groups of the abelian variety. The paper also discusses what can be said in regards to a control theorem when the set R contains all the primes of the number field dividing p.


Sign in / Sign up

Export Citation Format

Share Document