scholarly journals Almost prime solutions to diophantine systems of high rank

2016 ◽  
Vol 13 (06) ◽  
pp. 1491-1514 ◽  
Author(s):  
Ákos Magyar ◽  
Tatchai Titichetrakun

Let [Formula: see text] be a family of [Formula: see text] integral forms of degree [Formula: see text] and [Formula: see text] be a family of pairwise linearly independent linear forms in [Formula: see text] variables [Formula: see text]. We study the number of solutions [Formula: see text] to the diophantine system [Formula: see text] under the restriction that [Formula: see text] has a bounded number of prime factors for each [Formula: see text]. We show that the system [Formula: see text] that has the expected number of such “almost prime” solutions under similar conditions was established for existence of integer solutions by Birch.

Author(s):  
M. S. P. Eastham

SynopsisA recently developed asymptotic theory of higher-order differential equations is applied to problems of right-definite type to determine the numbers M+, M− of linearly independent solutions with a convergent Dirichlet integral, M+ and M− referring to the usual upper and lower λ.-half-planes. Particular attention is given to the phenomenon noted by Karlsson in which one of M+ and M− is maximal but not the other. Conditions are given under which M+ (say) is maximal and M− is the same, one less, and two less.


Author(s):  
Tapani Matala-aho

Given a sequence of linear forms in m ≥ 2 complex or p-adic numbers α1, …,αm ∈ Kv with appropriate growth conditions, Nesterenko proved a lower bound for the dimension d of the vector space Kα1 + ··· + Kαm over K, when K = Q and v is the infinite place. We shall generalize Nesterenko's dimension estimate over number fields K with appropriate places v, if the lower bound condition for |Rn| is replaced by the determinant condition. For the q-series approximations also a linear independence measure is given for the d linearly independent numbers. As an application we prove that the initial values F(t), F(qt), …, F(qm−1t) of the linear homogeneous q-functional equation where N = N(q, t), Pi = Pi(q, t) ∈ K[q, t] (i = 1, …, m), generate a vector space of dimension d ≥ 2 over K under some conditions for the coefficient polynomials, the solution F(t) and t, q ∈ K*.


2010 ◽  
Vol 81 (2) ◽  
pp. 177-185 ◽  
Author(s):  
BO HE ◽  
ALAIN TOGBÉ

AbstractLet a, b, c, x and y be positive integers. In this paper we sharpen a result of Le by showing that the Diophantine equation has at most two positive integer solutions (m,n) satisfying min (m,n)>1.


Author(s):  
R. C. Mason

Siegel, in a letter to Mordell of 1925(9), proved that the hyper-elliptic equation y2 = g(x) has only finitely many solutions in integers x and y, where g denotes a square-free polynomial of degree at least three with integer coefficients. Siegel's method reduces the hyperelliptic equation to a finite set of Thue equations f(x, y) = 1, where f denotes a binary form with algebraic coefficients and at least three distinct linear factors; x and y are integral in a fixed algebraic number field. Siegel had already proved that the Thue equations so obtained have only finitely many solutions. However, as is well known, the work of Siegel is ineffective in that it fails to provide bounds on the integer solutions of y2 = g(x). In 1969 Baker (1), using the theory of linear forms in logarithms, employed Siegel's technique to establish explicit bounds on x and y; Baker's result thus reduced the problem of determining all integer solutions of the hyperelliptic equation to a finite amount of computation.


Author(s):  
Apoloniusz Tyszka

Let f ( 1 ) = 1 , and let f ( n + 1 ) = 2 2 f ( n ) for every positive integer n. We consider the following hypothesis: if a system S ⊆ {xi · xj = xk : i, j, k ∈ {1, . . . , n}} ∪ {xi + 1 = xk : i, k ∈{1, . . . , n}} has only finitely many solutions in non-negative integers x1, . . . , xn, then each such solution (x1, . . . , xn) satisfies x1, . . . , xn ≤ f (2n). We prove:   (1) the hypothesisimplies that there exists an algorithm which takes as input a Diophantine equation, returns an integer, and this integer is greater than the heights of integer (non-negative integer, positive integer, rational) solutions, if the solution set is finite; (2) the hypothesis implies that there exists an algorithm for listing the Diophantine equations with infinitely many solutions in non-negative integers; (3) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many rational solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has a rational solution; (4) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many integer solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has an integer solution; (5) the hypothesis implies that if a set M ⊆ N has a finite-fold Diophantine representation, then M is computable.


2017 ◽  
Vol 25 (4) ◽  
pp. 283-288
Author(s):  
Yasushige Watase

SummaryIn the article we present in the Mizar system [1], [2] the formalized proofs for Hurwitz’ theorem [4, 1891] and Minkowski’s theorem [5]. Both theorems are well explained as a basic result of the theory of Diophantine approximations appeared in [3], [6]. A formal proof of Dirichlet’s theorem, namely an inequation |θ−y/x| ≤ 1/x2has infinitely many integer solutions (x, y) where θ is an irrational number, was given in [8]. A finer approximation is given by Hurwitz’ theorem: |θ− y/x|≤ 1/√5x2. Minkowski’s theorem concerns an inequation of a product of non-homogeneous binary linear forms such that |a1x + b1y + c1| · |a2x + b2y + c2| ≤ ∆/4 where ∆ = |a1b2− a2b1| ≠ 0, has at least one integer solution.


1996 ◽  
Vol 39 (2) ◽  
pp. 199-202 ◽  
Author(s):  
Al-Zaid Hassan ◽  
B. Brindza ◽  
Á. Pintér

AbstractAs it had been recognized by Liouville, Hermite, Mordell and others, the number of non-negative integer solutions of the equation in the title is strongly related to the class number of quadratic forms with discriminant —n. The purpose of this note is to point out a deeper relation which makes it possible to derive a reasonable upper bound for the number of solutions.


Author(s):  
Harold S. Erazo ◽  
Carlos A. Gómez ◽  
Florian Luca

In this paper, we show that if [Formula: see text] is the [Formula: see text]th solution of the Pell equation [Formula: see text] for some non-square [Formula: see text], then given any integer [Formula: see text], the equation [Formula: see text] has at most [Formula: see text] integer solutions [Formula: see text] with [Formula: see text] and [Formula: see text], except for the only pair [Formula: see text]. Moreover, we show that this bound is optimal. Additionally, we propose a conjecture about the number of solutions of Pillai’s problem in linear recurrent sequences.


Author(s):  
Apoloniusz Tyszka

Let f ( 1 ) = 1 , and let f ( n + 1 ) = 2 2 f ( n ) for every positive integer n. We consider the following hypothesis: if a system S ⊆ {xi · xj = xk : i, j, k ∈ {1, . . . , n}} ∪ {xi + 1 = xk : i, k ∈{1, . . . , n}} has only finitely many solutions in non-negative integers x1, . . . , xn, then each such solution (x1, . . . , xn) satisfies x1, . . . , xn ≤ f (2n). We prove:   (1) the hypothesisimplies that there exists an algorithm which takes as input a Diophantine equation, returns an integer, and this integer is greater than the heights of integer (non-negative integer, positive integer, rational) solutions, if the solution set is finite; (2) the hypothesis implies that there exists an algorithm for listing the Diophantine equations with infinitely many solutions in non-negative integers; (3) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many rational solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has a rational solution; (4) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many integer solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has an integer solution; (5) the hypothesis implies that if a set M ⊆ N has a finite-fold Diophantine representation, then M is computable.


Sign in / Sign up

Export Citation Format

Share Document