Congruence properties of pk(n)

2019 ◽  
Vol 15 (06) ◽  
pp. 1267-1290 ◽  
Author(s):  
Julia Q. D. Du ◽  
Edward Y. S. Liu ◽  
Jack C. D. Zhao

We present a unified approach to establish infinite families of congruences for [Formula: see text] for arbitrary positive integer [Formula: see text], where [Formula: see text] is given by the [Formula: see text]th power of the Euler product [Formula: see text]. For [Formula: see text], define [Formula: see text] to be the least positive integer such that [Formula: see text] and [Formula: see text] the least non-negative integer satisfying [Formula: see text]. Using the Atkin [Formula: see text]-operator, we find that the generating function of [Formula: see text] (respectively, [Formula: see text]) can be expressed as the product of an integral linear combination of modular functions on [Formula: see text] and [Formula: see text] (respectively, [Formula: see text]) for any [Formula: see text] and [Formula: see text]. By investigating the properties of the modular equations of the [Formula: see text]th order under the Atkin [Formula: see text]-operator, we obtain that these generating functions are determined by some linear recurring sequences. Utilizing the periodicity of these linear recurring sequences modulo [Formula: see text], we are led to infinite families of congruences for [Formula: see text] modulo any [Formula: see text] with [Formula: see text] and periodic relations between the values of [Formula: see text] modulo powers of [Formula: see text]. As applications, infinite families of congruences for many partition functions such as [Formula: see text]-core partition functions, the partition function and Andrews’ spt-function are easily obtained.

10.37236/2574 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Zachary Gates ◽  
Brian Goldman ◽  
C. Ryan Vinroot

Given a positive integer $n$, and partitions $\lambda$ and $\mu$ of $n$, let $K_{\lambda \mu}$ denote the Kostka number, which is the number of semistandard Young tableaux of shape $\lambda$ and weight $\mu$.  Let $J(\lambda)$ denote the number of $\mu$ such that $K_{\lambda \mu} = 1$.  By applying a result of Berenshtein and Zelevinskii, we obtain a formula for $J(\lambda)$ in terms of restricted partition functions, which is recursive in the number of distinct part sizes of $\lambda$.  We use this to classify all partitions $\lambda$ such that $J(\lambda) = 1$ and all $\lambda$ such that $J(\lambda) = 2$.  We then consider signed tableaux, where a semistandard signed tableau of shape $\lambda$ has entries from the ordered set $\{0 < \bar{1} < 1 < \bar{2} < 2 < \cdots \}$, and such that $i$ and $\bar{i}$ contribute equally to the weight.  For a weight $(w_0, \mu)$ with $\mu$ a partition, the signed Kostka number $K^{\pm}_{\lambda,(w_0, \mu)}$ is defined as the number of semistandard signed tableaux of shape $\lambda$ and weight $(w_0, \mu)$, and $J^{\pm}(\lambda)$ is then defined to be the number of weights $(w_0, \mu)$ such that $K^{\pm}_{\lambda, (w_0, \mu)} = 1$.  Using different methods than in the unsigned case, we find that the only nonzero value which $J^{\pm}(\lambda)$ can take is $1$, and we find all sequences of partitions with this property.  We conclude with an application of these results on signed tableaux to the character theory of finite unitary groups.


2004 ◽  
Vol 35 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Kiyoshi Baba ◽  
Ken-Ichi Yoshida

Let $ R $ be an integral domain and $ \alpha $ an anti-integral element of degree $ d $ over $ R $. In the paper [3] we give a condition for $ \alpha^2-a$ to be a unit of $ R[\alpha] $. In this paper we will generalize the result to an arbitrary positive integer $n$ and give a condition, in terms of the ideal $ I_{[\alpha]}^{n}D(\sqrt[n]{a}) $ of $ R $, for $ \alpha^{n}-a$ to be a unit of $ R[\alpha] $.


Author(s):  
Honglin Zou ◽  
Jianlong Chen ◽  
Huihui Zhu ◽  
Yujie Wei

Recently, a new type of generalized inverse called the [Formula: see text]-strong Drazin inverse was introduced by Mosić in the setting of rings. Namely, let [Formula: see text] be a ring and [Formula: see text] be a positive integer, an element [Formula: see text] is called the [Formula: see text]-strong Drazin inverse of [Formula: see text] if it satisfies [Formula: see text], [Formula: see text] and [Formula: see text]. The main aim of this paper is to consider some equivalent characterizations for the [Formula: see text]-strong Drazin invertibility in a ring. Firstly, we give an equivalent definition of the [Formula: see text]-strong Drazin inverse, that is, [Formula: see text] is the [Formula: see text]-strong Drazin inverse of [Formula: see text] if and only if [Formula: see text], [Formula: see text] and [Formula: see text]. Also, we obtain some existence criteria for this inverse by means of idempotents. In particular, the [Formula: see text]-strong Drazin invertibility of the product [Formula: see text] are investigated, where [Formula: see text] is regular and [Formula: see text] are arbitrary elements in a ring.


1990 ◽  
Vol 33 (1) ◽  
pp. 143-158 ◽  
Author(s):  
Shian Gao

We prove the following: Assume that , where p is an odd positive integer, g(ζ is a transcendental entire function with order of growth less than 1, and set A(z) = B(ezz). Then for every solution , the exponent of convergence of the zero-sequence is infinite, and, in fact, the stronger conclusion holds. We also give an example to show that if the order of growth of g(ζ) equals 1 (or, in fact, equals an arbitrary positive integer), this conclusion doesn't hold.


1956 ◽  
Vol 10 ◽  
pp. 1-7
Author(s):  
L. Carlitz

Let p be a prime > 2 and m an arbitrary positive integer; definewhere (r/p) is the Legendre symbol. We consider the problem of finding the highest power of p dividing Sm. A little more generally, if we putwhere a is an arbitrary integer, we seek the highest power of p dividing Sm(a). Clearly Sm = Sm(0), and Sm(a) = Sm(b) when a ≡ b (mod p).


Author(s):  
Yasuyuki Hirano

AbstractA ring R is called a (proper) quotient no-zero-divisor ring if every (proper) nonzero factor ring of R has no zero-divisors. A characterization of a quotient no-zero-divisor ring is given. Using it, the additive groups of quotient no-zero-divisor rings are determined. In addition, for an arbitrary positive integer n, a quotient no-zero-divisor ring with exactly n proper ideals is constructed. Finally, proper quotient no-zero-divisor rings and their additive groups are classified.


2016 ◽  
Vol 290 ◽  
pp. 739-772 ◽  
Author(s):  
Su-Ping Cui ◽  
Nancy S.S. Gu ◽  
Anthony X. Huang

2013 ◽  
Vol 17 (1) ◽  
pp. 15-26 ◽  
Author(s):  
Katherine Anders ◽  
Melissa Dennison ◽  
Jennifer Weber Lansing ◽  
Bruce Reznick

2011 ◽  
Vol 4 (4) ◽  
pp. 411-416
Author(s):  
Andrew Gruet ◽  
Linzhi Wang ◽  
Katherine Yu ◽  
Jiangang Zeng

Sign in / Sign up

Export Citation Format

Share Document