On Yokoi’s Invariants and the Ankeny–Artin–Chowla conjecture

Author(s):  
Sevcan Işıkay ◽  
Ayten Peki̇n

Let [Formula: see text] be a positive square-free integer and [Formula: see text] be the fundamental unit of the real quadratic field [Formula: see text]. The Ankeny–Artin–Chowla (AAC) conjecture asserts that [Formula: see text] for primes [Formula: see text], which still remains unsolved. In this paper, sufficient conditions for [Formula: see text] have been given in terms of Yokoi’s invariants [Formula: see text] and [Formula: see text], and it has been shown that the AAC conjecture is true in some special cases.

1978 ◽  
Vol 71 ◽  
pp. 149-167 ◽  
Author(s):  
Tetsuya Asai

Similarly to the real quadratic field case by Doi and Naganuma ([3], [9]) there is a lifting from an elliptic modular form to an automorphic form on SL2(C) with respect to an arithmetic discrete subgroup relative to an imaginary quadratic field. This fact is contained in his general theory of Jacquet ([6]) as a special case. In this paper, we try to reproduce this lifting in its concrete form by using the theta function method developed first by Niwa ([10]); also Kudla ([7]) has treated the real quadratic field case on the same line. The theta function method will naturally lead to a theory of lifting to an orthogonal group of general signature (cf. Oda [11]), and the present note will give a prototype of non-holomorphic case.


Author(s):  
Carlos Castaño-Bernard ◽  
Florian Luca

For each prime [Formula: see text] consider the Legendre character [Formula: see text]. Let [Formula: see text] be the number of partitions of [Formula: see text] into parts [Formula: see text] such that [Formula: see text]. Petersson proved a beautiful limit formula for the ratio of [Formula: see text] to [Formula: see text] as [Formula: see text] expressed in terms of important invariants of the real quadratic field [Formula: see text]. But his proof is not illuminating and Grosswald conjectured a more natural proof using a Tauberian converse of the Stolz–Cesàro theorem. In this paper, we suggest an approach to address Grosswald’s conjecture. We discuss a monotonicity conjecture which looks quite natural in the context of the monotonicity theorems of Bateman–Erdős.


2005 ◽  
Vol 42 (4) ◽  
pp. 371-386
Author(s):  
M. Aslam Malik ◽  
S. M. Husnine ◽  
Abdul Majeed

Studying groups through their actions on different sets and algebraic structures has become a useful technique to know about the structure of the groups. The main object of this work is to examine the action of the infinite group \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $H = \langle x,y : x^{2} = y^{4} = 1\rangle$ \end{document} where \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $x (z) = \frac{-1}{2z}$ \end{document} and \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $y (z) = \frac{-1}{2(z+1)}$ \end{document} on the real quadratic field \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\mathbb{Q}\left(\sqrt{n}\,\right)$ \end{document} and find invariant subsets of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\mathbb{Q}\left(\sqrt{n}\,\right)$ \end{document} under the action of the group \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $H$ \end{document}. We also discuss some basic properties of elements of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\mathbb{Q}\left(\sqrt{n}\,\right)$ \end{document} under the action of the group H.


1968 ◽  
Vol 33 ◽  
pp. 139-152 ◽  
Author(s):  
Hideo Yokoi

Let Q be the rational number field, and let K = (D > 0 a rational integer) be a real quadratic field. Then, throughout this paper, we shall understand by the fundamental unit εD of the normalized fundamental unit εD > 1.


2010 ◽  
Vol 52 (3) ◽  
pp. 575-581 ◽  
Author(s):  
YASUHIRO KISHI

AbstractLet n(≥ 3) be an odd integer. Let k:= $\Q(\sqrt{4-3^n})\)$ be the imaginary quadratic field and k′:= $\Q(\sqrt{-3(4-3^n)})\)$ the real quadratic field. In this paper, we prove that the class number of k is divisible by 3 unconditionally, and the class number of k′ is divisible by 3 if n(≥ 9) is divisible by 3. Moreover, we prove that the 3-rank of the ideal class group of k is at least 2 if n(≥ 9) is divisible by 3.


1981 ◽  
Vol 33 (1) ◽  
pp. 55-58 ◽  
Author(s):  
Hiroshi Takeuchi

Let p be an integer and let H(p) be the class-number of the fieldwhere ζp is a primitive p-th root of unity and Q is the field of rational numbers. It has been proved in [1] that if p = (2qn)2 + 1 is a prime, where q is a prime and n > 1 an integer, then H(p) > 1. Later, S. D. Lang [2] proved the same result for the prime number p = ((2n + 1)q)2 + 4, where q is an odd prime and n ≧ 1 an integer. Both results have been obtained in the case p ≡ 1 (mod 4).In this paper we shall prove the similar results for a certain prime number p ≡ 3 (mod 4).We designate by h(p) the class-number of the real quadratic field


2012 ◽  
Vol 85 (3) ◽  
pp. 359-370 ◽  
Author(s):  
JAE MOON KIM ◽  
JADO RYU

AbstractFor a real quadratic field $k=\mathbb {Q}(\sqrt {pq})$, let tk be the exact power of 2 dividing the class number hk of k and ηk the fundamental unit of k. The aim of this paper is to study tk and the value of Nk/ℚ(ηk). Various methods have been successfully applied to obtain results related to this topic. The idea of our work is to select a special circular unit ℰk of k and investigate C(k)=〈±ℰk 〉. We examine the indices [E(k):C(k)] and [C(k):CS (k)] , where E(k) is the group of units of k, and CS (k) is that of circular units of k defined by Sinnott. Then by using the Sinnott’s index formula [E(k):CS (k)]=hk, we obtain as much information about tk and Nk/ℚ (ηk) as possible.


1984 ◽  
Vol 95 ◽  
pp. 125-135 ◽  
Author(s):  
Takashi Azuhata

Let Q be the rational number field and h(m) be the class number of the real quadratic field with a positive square-free integer m. It is known that if h(m) = 1 holds, then m is one of the following four types with prime numbers p ≡ 1, pt ≡ 3 (mod 4) (1 昤 i ≥ 4) : i) m = p, ii) m = p1, iii) m = 2 or m = 2p2, iv) m = p3p4 (see Behrbohm and Rédei [1]). The sufficient conditions for h(m) > 1 with these m were given by several authors: in all cases by Hasse [2], in case i) by Ankeny, Chowla and Hasse [3] and by Lang [4], in case ii) by Takeuchi [5] and by Yokoi [6].


Sign in / Sign up

Export Citation Format

Share Document