Almost periodic solutions of nonautonomous Lotka–Volterra competitive systems with dominated delays

2015 ◽  
Vol 08 (02) ◽  
pp. 1550019 ◽  
Author(s):  
Chunhua Feng ◽  
Jianmin Huang

In this paper, a class of nonautonomous Lotka–Volterra type multispecies competitive systems with delays is studied. By employing Lyapunov functional, some sufficient conditions to guarantee the existence of almost periodic solutions for the Lotka–Volterra system are obtained.

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Ni Hua ◽  
Tian Li-Xin ◽  
Yao Hong-Xing

With the help of the variable substitution and applying the fixed point theorem, we derive the sufficient conditions which guarantee the existence of the positive almost periodic solutions for a class of Lotka-Volterra type system. The main results improve and generalize the former corresponding results.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Hong Zhang ◽  
Mingquan Yang

Shunting inhibitory cellular neural networks (SICNNs) are considered with the introduction of continuously distributed delays in the leakage (or forgetting) terms. By using the Lyapunov functional method and differential inequality techniques, some sufficient conditions for the existence and exponential stability of almost periodic solutions are established. Our results complement with some recent ones.


Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 321 ◽  
Author(s):  
Bing Li ◽  
Yongkun Li ◽  
Xiaofang Meng

In this paper, neutral-type competitive neural networks with mixed time-varying delays and leakage delays on time scales are proposed. Based on the contraction fixed-point theorem, some sufficient conditions that are independent of the backwards graininess function of the time scale are obtained for the existence and global exponential stability of almost periodic solutions of neural networks under consideration. The results obtained are brand new, indicating that the continuous time and discrete-time conditions of the network share the same dynamic behavior. Finally, two examples are given to illustrate the validity of the results obtained.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Yongkun Li ◽  
Lili Zhao ◽  
Li Yang

On a new type of almost periodic time scales, a class of BAM neural networks is considered. By employing a fixed point theorem and differential inequality techniques, some sufficient conditions ensuring the existence and global exponential stability ofC1-almost periodic solutions for this class of networks with time-varying delays are established. Two examples are given to show the effectiveness of the proposed method and results.


2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Nguyen Thanh Lan

For the differential equation , on a Hilbert space , we find the necessary and sufficient conditions that the above-mentioned equation has a unique almost periodic solution. Some applications are also given.


2007 ◽  
Vol 50 (1) ◽  
pp. 229-249 ◽  
Author(s):  
Yonghui Xia ◽  
Jinde Cao

AbstractBy using Lebesgue’s dominated convergence theorem and constructing a suitable Lyapunov functional, we study the following almost-periodic Lotka–Volterra model with $M$ predators and $N$ prey of the integro-differential equations\begin{alignat*}{2} \dot{x}_i(t)\amp=x_i(t)\biggl[b_i(t)-a_{ii}(t)x_i(t)-\sum_{k=1,k\neq i}^{N}a_{ik}(t)\int_{-\infty}^tH_{ik}(t-\sigma)x_k(\sigma)\,\mathrm{d}\sigma\\ \amp\hskip45mm-\sum_{l=1}^{M}c_{il}(t)\int_{-\infty}^tK_{il}(t-\sigma)y_l(\sigma)\,\mathrm{d}\sigma\biggr],\amp\quad i\amp=1,2,\dots,N,\\ \dot{y}_j(t)\amp=y_j(t)\biggl[-r_j(t)-e_{jj}(t)y_j(t) +\sum_{k=1}^{N}d_{jk}(t)\int_{-\infty}^tP_{jk}(t-\sigma)x_k(\sigma)\,\mathrm{d}\sigma \\ \amp\hskip45mm-\sum_{l=1,l\neq j}^{M} e_{jl}(t)\int_{-\infty}^tQ_{jl}(t-\sigma)y_l(\sigma)\,\mathrm{d}\sigma\biggr],\amp\quad j\amp=1,2,\dots,M. \end{alignat*}Some sufficient conditions are obtained for the existence of a unique almost-periodic solution of this model. Several examples show that the obtained criteria are new, general and easily verifiable.


2010 ◽  
Vol 15 (4) ◽  
pp. 505-516 ◽  
Author(s):  
Gani Tr. Stamov ◽  
Jehad O. Alzabut

In this paper, sufficient conditions are established for the existence of almost periodic solutions for system of impulsive integro‐differential neural networks. Our approach is based on the estimation of the Cauchy matrix of linear impulsive differential equations. We shall employ the contraction mapping principle as well as Gronwall‐Bellman's inequality to prove our main result. The research of Gani Tr. Stamov is partially supported by the Grand 100ni087–16 from Technical University–Sofia


2008 ◽  
Vol 01 (03) ◽  
pp. 355-360 ◽  
Author(s):  
CHUNHUA FENG ◽  
ZHENKUN HUANG

By employing a fixed point theorem in cones, this paper investigates the existence of almost periodic solutions for an impulsive logistic equation with infinite delay. A set of sufficient conditions on the existence of almost periodic solutions of the equation is obtained.


2010 ◽  
Vol 2010 ◽  
pp. 1-20 ◽  
Author(s):  
Xinsong Yang ◽  
Jinde Cao ◽  
Chuangxia Huang ◽  
Yao Long

By using the Leray-Schauder fixed point theorem and differential inequality techniques, several new sufficient conditions are obtained for the existence and global exponential stability of almost periodic solutions for shunting inhibitory cellular neural networks with discrete and distributed delays. The model in this paper possesses two characters: nonlinear behaved functions and all coefficients are time varying. Hence, our model is general and applicable to many known models. Moreover, our main results are also general and can be easily deduced to many simple cases, including some existing results. An example and its simulation are employed to illustrate our feasible results.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Hongying Zhu ◽  
Chunhua Feng

This paper studies the existence and uniform asymptotic stability of pseudo almost periodic solutions to Cohen-Grossberg neural networks (CGNNs) with discrete and distributed delays by applying Schauder fixed point theorem and constructing a suitable Lyapunov functional. An example is given to show the effectiveness of the main results.


Sign in / Sign up

Export Citation Format

Share Document